Document Type : Special Issue


Esfarayen University of Technology, Esfarayen, North Khorasan, Iran



As usual, the ring of continuous real-valued functions on a frame $L$ is denoted by $\mathcal{R}L$. We determine the relation among strongly $z$-ideals, strongly divisible ideals and uniformly closed ideals in the ring $\mathcal{R}L$. We characterize Lindel\"of frames based on strongly fixed ideals in $\mathcal{R}L$. We observe that a weakly spatial frame $L$ is Lindel\"of if and if every strongly divisible ideal in $\mathcal{R}L$ is strongly fixed; if and only if every closed ideal in $\mathcal{R}L$ is strongly fixed.