We consider the existence of positive solutions of singular nonlinear semipositone problem of the form \[\left\{\begin{array}{ll} -div(|x|^{-\alpha p}|\nabla u|^{p-2}\nabla u)=|x|^{-(\alpha+1)p+\beta}(au^{p-1}-bu^{r}-f(u)-\frac{c}{u^{\gamma}}), & x\in\Omega, \\ u=0, & x\in\partial\Omega, \end{array}\right.\] where $\Omega$ is a bounded domain in ${\mathbb{R}}^{N}$ with smooth boundary $\partial\Omega$, $1<p<N$, $0\leq\alpha<\frac{N-p}{p}$,$ r>p-1 $,$\gamma\in (0,1)$, $a,b,c,\beta$ are positive parameters, and $f:[0,+\infty)\to{\mathbb{R}}$ is a continuous function . This model arises in the studies of population biology of one species with u representing the concentration of the species. We obtain our results via the method of sub and supersolutions.
Shakeri, S. (2024). A Population biological model with a singular nonlinearity and Caffarelli-Kohn-Nirenberg exponents. Caspian Journal of Mathematical Sciences, 13(2), 368-375. doi: 10.22080/cjms.2024.21918.1592
MLA
Saleh Shakeri. "A Population biological model with a singular nonlinearity and Caffarelli-Kohn-Nirenberg exponents", Caspian Journal of Mathematical Sciences, 13, 2, 2024, 368-375. doi: 10.22080/cjms.2024.21918.1592
HARVARD
Shakeri, S. (2024). 'A Population biological model with a singular nonlinearity and Caffarelli-Kohn-Nirenberg exponents', Caspian Journal of Mathematical Sciences, 13(2), pp. 368-375. doi: 10.22080/cjms.2024.21918.1592
CHICAGO
S. Shakeri, "A Population biological model with a singular nonlinearity and Caffarelli-Kohn-Nirenberg exponents," Caspian Journal of Mathematical Sciences, 13 2 (2024): 368-375, doi: 10.22080/cjms.2024.21918.1592
VANCOUVER
Shakeri, S. A Population biological model with a singular nonlinearity and Caffarelli-Kohn-Nirenberg exponents. Caspian Journal of Mathematical Sciences, 2024; 13(2): 368-375. doi: 10.22080/cjms.2024.21918.1592