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Abstract. We consider the existence of positive solutions of sin-
gular nonlinear semipositone problem of the form

−div(|x|−αp|∇u|p−2∇u)

= |x|−(α+1)p+β(aup−1 − bur − f(u)− c
uγ ), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω,
1 < p < N , 0 ≤ α < N−p

p
,r > p− 1,γ ∈ (0, 1), a, b, c, β are positive

parameters, and f : [0,+∞) → R is a continuous function . This
model arises in the studies of population biology of one species with
u representing the concentration of the species. We obtain our re-
sults via the method of sub and supersolutions.
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1. Introduction

We study the existence of positive solutions to the singular infinite semi-
positone problem

−div(|x|−αp|∇u|p−2∇u)
= |x|−(α+1)p+β(aup−1 − bur − f(u)− c

uγ ), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p < N ,
0 ≤ α < N−p

p ,r > p − 1, γ ∈ (0, 1), a, b, c, β are positive parameters ,
and f : [0,+∞) → R is a continuous function . We make the following
assumptions:
(H1) There exist A > 0 and l > p − 1 such that f(s) ≤ Asl, for all
s ≥ 0.
(H2) There exist a constant S > 0 such that aup−1− bur ≤ f(u)+S for
all u > 0.
Elliptic problems involving more general operator, such as the degener-
ate quasilinear elliptic operator given by −div(|x|−αp|∇u|p−2∇u), were
motivated by the following Caffarelli, Kohn and Nirenberg’s inequality
(see [1, 2]). The study of this type of problem is motivated by its vari-
ous applications, for example, in fluid mechanics, in newtonian fluids, in
flow through porous media and in glaciology (see [3, 4]). More recently,
reaction-diffusion models have been used to describe spatiotemporal phe-
nomena in disciplines other than ecology, such as physics, chemistry, and
biology ( see[5, 6, 7] ). In addition, most ecological systems have some
form of predation or harvesting of the population, for example, hunting
or fishing is often used as an effective means of wildlife management.
This model describes the dynamics of the fish population with preda-
tion. In such cases u denotes the population density and the term c

uγ

corresponds to predation. So, the study of positive solutions of (1.1)
has more practical meanings. In [13], the authors have studied the equa-
tion −∆pu = aup−1 − bur − f(u) − c

uγ Here we focus on extending the
study ([13]). In fact this paper is motivated, in part, by the mathe-
matical difficulty posed by the degenerate quasilinear elliptic operator
compared to the Laplacian operator .This extension is nontrivial and re-
quires more careful analysis of the nonlinearity. Our approach is based
on the method of sub-super- solutions, ([11, 12]).

2. Main result

In this paper, we denote W 1,p
0 (Ω, |x|−αp) the completion of C∞

0 (Ω),
with respect to the norm ∥u∥ = (

∫
Ω |x|−αp|∇u|pdx)

1
p . To precisely state
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our existence result we consider the eigenvalue problem{
−div(|x|−αp|∇ϕ|p−2∇ϕ) = λ|x|−(α+1)p+β|ϕ|p−2ϕ, x ∈ Ω,
ϕ = 0, x ∈ ∂Ω.

(2.1)

Let ϕ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p
of (2.1) such that ϕ1,p(x) > 0 in Ω and ∥ϕ1,p∥∞ = 1 (see [8, 9]). It can be
shown that ∂ϕ1,p

∂n < 0 on ∂Ω. Here n is the outward normal. We will also
consider the unique solution ζp(x) ∈W 1,p

0 (Ω, |x|−αp) for the problem{
−div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+β, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(2.2)

to discuss our existence. It is known that ζp(x) > 0 in Ω and ∂ζp
∂n < 0

on ∂Ω ([8]).
Now we give the definition of weak solution and sub-supersolution of
(1.1) . A nonnegative function ψ is called a sub-solution of (1.1) if it
satisfy ψ ≥ 0 on ∂Ω and∫

Ω
|x|−αp|∇ψ|p−2∇ψ · ∇wdx

≤
∫
Ω
|x|−(α+1)p+β(aψp−1 − bψr − f(ψ)− c

ψγ
)wdx, (2.3)

and a nonnegative function φ is called a super-solution of (1.1) if it
satisfy φ ≥ 0 on ∂Ω and∫

Ω
|x|−αp|∇φ|p−2∇φ · ∇wdx

≥
∫
Ω
|x|−(α+1)p+β(aφp−1 − bφr − f(φ)− c

φγ
)wdx. (2.4)

for all w ∈W = {w ∈ C∞
0 (Ω) | w ≥ 0, x ∈ Ω}. Then the following result

holds:

Lemma 2.1. Suppose that there exist sub and super-solutions ψ and φ
respectively of (1.1) such that ψ ≤ φ. Then (1.1) has a solution u such
that ψ ≤ u ≤ φ. ([8])

We are now ready to give our existence result.

Theorem 2.2. Let (H1)− (H2) hold. If a > ( p
p−1+γ )

p−1λ1,p, then there
exists positive constant c0 > 0 such that if 0 < c < c0, then the problem
(1.1) has a positive solution.

Proof. We start the construction of a positive subsolution for (1.1). To
get a positive subsolution, we can apply an anti-maximum principle (
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[10]), from which we know that there exist a δ1 > 0 and a solution zλ of{
−div(|x|−αp|∇z|p−2∇z) = |x|−(α+1)p+β(λzp−1 − 1), x ∈ Ω,
z = 0, x ∈ ∂Ω,

(2.5)
for λ ∈ (λ1,p, λ1,p + δ1). Fix λ̂ ∈ (λ1,p,min{(p−1+γ

p )p−1a, λ1,p + δ1}). It
is well known that zλ̂ > 0 in Ω and ∂zλ̂

∂n < 0 on ∂Ω, where n is the outer
unit normal to Ω. Hence there exist positive constants ϵ, δ, σ such that

|x|−αp|∇zλ̂|
p ≥ ϵ x ∈ Ω̄δ (2.6)

zλ̂ ≥ σ x ∈ Ω0 = Ω⧹Ω̄δ (2.7)

where Ω̄δ = {x ∈ Ω | d(x, ∂Ω) ≤ δ}.
Choose η1, η2 > 0 such that η1 ≤ min |x|−(α+1)p+β, and

η2 ≥ max |x|−(α+1)p+β in Ω̄δ. We construct a subsolution ψ of (1.1)
using zλ̂. Define ψ =Mz

p
p−1+γ

λ̂
, where

M := min

{(
( p
p−1+γ )

p−1

2b∥zλ̂∥
rp−(p−1)(γ−1)

p−1+γ
∞

) 1
r−p+1

,

(
a− ( p

p−1+γ )
p−1λ̂

3b∥zλ̂∥
p(r−p+1)
p−1+γ

∞

) 1
r−p+1

,

(
( p
p−1+γ )

p−1

2A∥zλ̂∥
lp−(p−1)(γ−1)

p−1+γ
∞

) 1
l−p+1

,

(
a− ( p

p−1+γ )
p−1λ̂

3A∥zλ̂∥
p(l−p+1)
p−1+γ

∞

) 1
l−p+1

}

Let w ∈W . Then a calculation shows that

∇ψ =M
( p

p− 1 + γ

)
z

1−γ
p−1+γ

λ̂
∇zλ̂

∫
Ω
|x|−αp|∇ψ|p−2∇ψ∇wdx

= Mp−1
( p

p− 1 + γ

)p−1
∫
Ω
|x|−αpz

(1−γ)(p−1)
p−1+γ

λ̂
|∇zλ̂|

p−2∇zλ̂∇wdx

= Mp−1
( p

p− 1 + γ

)p−1
∫
Ω
|x|−αp|∇zλ̂|

p−2∇zλ̂
[
∇
(
z

(1−γ)(p−1)
p−1+γ

λ̂
w
)

−∇z
(1−γ)(p−1)

p−1+γ

λ̂
w
]
dx



372 S. Shakeri

= Mp−1
( p

p− 1 + γ

)p−1
∫
Ω

[
|x|−(α+1)p+βz

(1−γ)(p−1)
p−1+γ

λ̂
(λ̂zp−1

λ̂
− 1)

−|x|−αp (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

]
wdx

=

∫
Ω

[
|x|−(α+1)p+βMp−1

( p

p− 1 + γ

)p−1
λ̂z

p(p−1)
p−1+γ

λ̂

−|x|−(α+1)p+βMp−1
( p

p− 1 + γ

)p−1
z

(1−γ)(p−1)
p−1+γ

λ̂

−|x|−αpMp−1
( p

p− 1 + γ

)p−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

]
wdx,

(2.8)

and ∫
Ω
|x|−(α+1)p+β

[
aψp−1 − bψr − f(ψ)− c

ψγ

]
wdx

=

∫
Ω

[
|x|−(α+1)p+βaMp−1z

p(p−1)
p−1+γ

λ̂
− |x|−(α+1)p+βbM rz

pr
p−1+γ

λ̂

−|x|−(α+1)p+βf
(
Mz

p
p−1+γ

λ̂

)
−|x|−(α+1)p+β c

Mγz
γr

p−1+γ

λ̂

]
wdx. (2.9)

Let c0 = Mp−1+γ min

{( p

p− 1 + γ

)p−1(
(
(p− 1)(1− γ)

p− 1 + γ
)
) ϵ
η2
,
1

3
σp
(
a −

( p

p− 1 + γ

)p−1
λ̂
)}

.

Let x ∈ Ω̄δ, c ≤ c0. Since
( p

p− 1 + γ

)p−1
λ̂ < a, we have

|x|−(α+1)p+βMp−1
( p

p− 1 + γ

)p−1
λ̂z

p(p−1)
p−1+γ

λ̂
< |x|−(α+1)p+βa

(
Mz

p
p−1+γ

λ̂

)p−1
.

(2.10)
From the choice of M , we have

1

2

( p

p− 1 + γ

)p−1

≥ bM r−p+1∥zλ̂∥
rp−(p−1)(γ−1)

p−1+γ
∞ , (2.11)
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1

2

( p

p− 1 + γ

)p−1
≥ AM l−p+1∥zλ̂∥

lp−(p−1)(γ−1)
p−1+γ

∞ , (2.12)

and by (2.11), (2.12) and (H1), we know that

− 1

2
|x|−(α+1)p+βMp−1

( p

p− 1 + γ

)p−1
z

(1−γ)(p−1)
p−1+γ

λ̂

≤ −|x|−(α+1)p+βb
(
Mz

p
p−1+γ

λ̂

)r
, (2.13)

− 1

2
|x|−(α+1)p+βMp−1

( p

p− 1 + γ

)p−1
z

(1−γ)(p−1)
p−1+γ

λ̂

≤ −|x|−(α+1)p+βA
(
Mz

p
p−1+γ

λ̂

)l
≤ −|x|−(α+1)p+βf

(
Mz

p
p−1+γ

λ̂

)
. (2.14)

Since |x|−αp|∇zλ̂|
p ≥ ϵ in Ω̄δ, from the choice of c0 we have

− |x|−αpMp−1
( p

p− 1 + γ

)p−1((p− 1)(1− γ)

p− 1 + γ

) |∇zλ̂|p
z

γp
p−1+γ

λ̂

≤ −|x|−(α+1)p+β c(
Mz

p
p−1+γ

λ̂

)γ . (2.15)

Hence by using (2.10), (2.13), (2.14) and (2.15) we have∫
Ω̄δ

|x|−αp|∇ψ|p−2∇ψ∇wdx ≤
∫
Ω

[
|x|−(α+1)p+βaMp−1z

p(p−1)
p−1+γ

λ̂

−|x|−(α+1)p+βbM rz
pr

p−1+γ

λ̂
− |x|−(α+1)p+βf

(
Mz

p
p−1+γ

λ̂

)
−|x|−(α+1)p+β c(

Mz
p

p−1+γ

λ̂

)γ

]
wdx

=

∫
Ω̄δ

|x|−(α+1)p+β
[
aψp−1 − bψr − f(ψ)− c

ψγ

]
wdx. (2.16)

On the other hand on Ω0 = Ω⧹Ω̄δ, we have zλ̂ ≥ σ, and from the
definition of c0, for c ≤ c0 we have

c

Mγ
≤ 1

3
Mp−1zp

λ̂

(
a−

( p

p− 1 + γ

)p−1
λ̂
)
, (2.17)

and also from the choice of M we have

bM r−p+1z
p(r−p+1)
p−1+γ

λ̂
≤ 1

3

(
a−

( p

p− 1 + γ

)p−1
λ̂
)
, (2.18)

AM l−p+1z
p(l−p+1)
p−1+γ

λ̂
≤ 1

3

(
a−

( p

p− 1 + γ

)p−1
λ̂
)
. (2.19)
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By combining (2.17), (2.18) and (2.19) we have∫
Ω0

|x|−αp|∇ψ|p−2∇ψ∇wdx

=

∫
Ω0

[
|x|−(α+1)p+βMp−1

( p

p− 1 + γ

)p−1
λ̂z

p(p−1)
p−1+γ

λ̂

− |x|−(α+1)p+βMp−1
( p

p− 1 + γ

)p−1
z

(1−γ)(p−1)
p−1+γ

λ̂

− |x|−αpMp−1
( p

p− 1 + γ

)p−1 (1− γ)(p− 1)

(p− 1 + γ)

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

]
wdx

≤
∫
Ω0

|x|−(α+1)p+βMp−1
( p

p− 1 + γ

)p−1
λ̂z

p(p−1)
p−1+γ

λ̂
wdx

=

∫
Ω0

[ |x|−(α+1)p+β

z
γp

p−1+γ

λ̂

3∑
k=1

(1
3
Mp−1(

p

p− 1 + γ
)p−1λ̂zp

λ̂

)]
wdx

≤
∫
Ω0

[ |x|−(α+1)p+β

z
γp

p−1+γ

λ̂

{
(
1

3
Mp−1zp

λ̂
a− c

Mγ
)

+Mp−1zp
λ̂
(
1

3
a− bM r−p+1z

p(r−p+1)
p−1+γ

λ̂
)

+Mp−1zp
λ̂
(
1

3
a−AM l−p+1z

p(l−p+1)
p−1+γ

λ̂
)
}]
wdx

≤
∫
Ω0

[
|x|−(α+1)p+β

(
aMp−1z

p(p−1)
p−1+γ

λ̂
− bM rz

rp
p−1+γ

λ̂

−AM lz
pl

p−1+γ

λ̂
− c

Mγ
z
− γp

p−1+γ

λ̂

)]
wdx

≤
∫
Ω0

[
|x|−(α+1)p+β

(
a(Mz

p
p−1+γ

λ̂
)p−1 − b(Mz

p
p−1+γ

λ̂
)r

− f(Mz
p

p−1+γ

λ̂
)− c

(Mz
p

p−1+γ

λ̂
)γ

)]
wdx

=

∫
Ω0

|x|−(α+1)p+β(aψp−1 − bψr − f(ψ)− c

ψγ
)wdx. (2.20)

By using (2.16) and (2.20) we see that ψ is a sub-solution of (1.1).
Next, we construct a supersolution φ of (1.1) such that φ ≥ ψ. By (H2)
and r > p−1 we can choose a S∗ such that aup−1−bur−f(u)− c

uγ ≤ S∗

for all u > 0. Let φ = (S∗)
1

p−1 ζ(x), where ζ(x) is the unique positive
solution of (2.2). We shall verify that φ is a super solution of (1.1). To
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this end, let w ∈W . Then we have∫
Ω
|x|−αp|∇φ|p−2∇φ · ∇wdx

= S∗
∫
Ω
|x|−(α+1)p+βwdx

≥
∫
Ω
|x|−(α+1)p+β(aφp−1 − bφr − f(φ)− c

φγ
)wdx.

Then, φ is a supersolution of (1.1). Finally, we can choose S∗ ≫ 1 such
that φ ≥ ψ in Ω. This completes the proof of Theorem 2.2. □
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