In this paper, we introduce the complex (anti complex) fuzzy topological space $(X, \mathfrak{T})$ with complex (anti complex) gradation of openness under $T$-norm ($C$-conorm) which $X$ is itself a $T$-complex ($C$-anti complex) fuzzy subset of a nonempty set $M$. We show that the set of all $T$-complex gradations of openness on $X$ is a semicomplete lattice. We give some example such as $T$-complex fuzzy subspace of $\Lambda \mathbb{R}^{m}$, the exterior algebra on $\mathbb{R}^{m}$.
Mostafavi, M., & Sadeghi, M. (2024). Semicomplete lattice of all $T$-complex gradations of openness on a fuzzy topological space. Caspian Journal of Mathematical Sciences, 13(1), 1-21. doi: 10.22080/cjms.2023.25632.1661
MLA
Marzieh Mostafavi; Masoumeh Sadeghi. "Semicomplete lattice of all $T$-complex gradations of openness on a fuzzy topological space", Caspian Journal of Mathematical Sciences, 13, 1, 2024, 1-21. doi: 10.22080/cjms.2023.25632.1661
HARVARD
Mostafavi, M., Sadeghi, M. (2024). 'Semicomplete lattice of all $T$-complex gradations of openness on a fuzzy topological space', Caspian Journal of Mathematical Sciences, 13(1), pp. 1-21. doi: 10.22080/cjms.2023.25632.1661
VANCOUVER
Mostafavi, M., Sadeghi, M. Semicomplete lattice of all $T$-complex gradations of openness on a fuzzy topological space. Caspian Journal of Mathematical Sciences, 2024; 13(1): 1-21. doi: 10.22080/cjms.2023.25632.1661