In this paper, we introduce the complex (anti complex) fuzzy topological space with complex (anti complex) gradation of openness under -norm (-conorm) which is itself a -complex (-anti complex) fuzzy subset of a nonempty set . We show that the set of all -complex gradations of openness on is a semicomplete lattice. We give some example such as -complex fuzzy subspace of , the exterior algebra on .
Mostafavi, M. , & Sadeghi, M. (2024). Semicomplete lattice of all -complex gradations of openness on a fuzzy topological space. Caspian Journal of Mathematical Sciences, 13(1), 1-21. doi: 10.22080/cjms.2023.25632.1661
MLA
Marzieh Mostafavi; Masoumeh Sadeghi. "Semicomplete lattice of all -complex gradations of openness on a fuzzy topological space", Caspian Journal of Mathematical Sciences, 13, 1, 2024, 1-21. doi: 10.22080/cjms.2023.25632.1661
HARVARD
Mostafavi, M., Sadeghi, M. (2024). 'Semicomplete lattice of all -complex gradations of openness on a fuzzy topological space', Caspian Journal of Mathematical Sciences, 13(1), pp. 1-21. doi: 10.22080/cjms.2023.25632.1661
CHICAGO
M. Mostafavi and M. Sadeghi, "Semicomplete lattice of all -complex gradations of openness on a fuzzy topological space," Caspian Journal of Mathematical Sciences, 13 1 (2024): 1-21, doi: 10.22080/cjms.2023.25632.1661
VANCOUVER
Mostafavi, M., Sadeghi, M. Semicomplete lattice of all -complex gradations of openness on a fuzzy topological space. Caspian Journal of Mathematical Sciences, 2024; 13(1): 1-21. doi: 10.22080/cjms.2023.25632.1661