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Abstract. In this paper, we introduce the complex (anti com-
plex) fuzzy topological space (X,T) with complex (anti complex)
gradation of openness under T -norm (C-conorm), which X is itself
a T -complex (C-anti complex) fuzzy subset of a nonempty set M .
We show that the set of all T -complex gradations of openness on X
is a semicomplete lattice. Some example such as T -complex fuzzy
subspace of ΛRm, the exterior algebra on Rm are given.
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1. Introduction

Ramot et al. [24] introduced the notion of a complex fuzzy set (CFS)
as an extension of a fuzzy set defined by Zadeh [30] which its range
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extends from a closed interval [0, 1] to a circle of radius one in a com-
plex plane. The ability of the complex fuzzy set to represent two-
dimensional phenomena makes it superior for fuzzy information pro-
cessing and intuition which is common in time-periodic phenomena.
Complex fuzzy sets, classes and their logic play an important role in
applications such as periodicity event prediction and advanced control
systems. To learn more about structures and applications of complex
fuzzy sets, see [1, 2, 3, 8, 9, 10, 11, 17, 23, 25, 26, 33]. Complex fuzzy
set is used in signals and systems because it behaves like the Fourier
transform in certain cases. Zeeshan and khan [18] developed a new al-
gorithm using complex fuzzy sets for applications in signals and systems
by which reference signals are identified from a large number of signals
detected by a digital receiver. They used the inverse discrete Fourier
transform of a complex fuzzy set for the input signals and a reference
signal. Therefore, a method is provided to measure the exact values of
two signals by which they can identify the reference signal. See also two
works [16, 32].

In this paper, we define complex fuzzy subspace of a k-vector space
V , under T -norm and anti complex fuzzy subspace of a k-vector space
V , under C-conorm. Some example such as T -complex fuzzy subspace
of ΛRm, the exterior algebra on Rm are given. Then we investigate var-
ious operations between T -complex fuzzy sets and present a numerical
example for each of them. Also we define image and inverse image of a
T -complex fuzzy subspace under a function.

Since Chang [5] defined fuzzy topology, various concepts of it were
defined such as [6, 7, 12, 19, 20, 21, 27, 28, 29]. In 1985, Shostak [27]
introduced a concept of the gradation of openness of fuzzy subsets of a
nonempty set. Also many authers investigated graded fuzzy topological
spaces such as [6, 7, 12, 20, 21, 29].

The author introduced and discussed properties of a kind of fuzzy
topological structure in [22]. Considering the importance and appli-
cation of the complex fuzzy sets, we study about this topic. In this
paper, we define complex (anti complex) fuzzy topological space (X,T)
with complex (anti complex) gradation of openness under T -norm (C-
conorm) which X is itself a T -complex (C-anti complex) fuzzy subset
of a nonempty set M . We define spiral T -norm of a sequence in [0, 1]
and spiral minimum of a sequence in [0, 2π] and then by using them, we
prove that the set of all T -complex gradations of openness (MT(X), ≤)
on X, is a semicomplete lattice

Definition 1.1. [24] Let M be a nonempty set. A complex fuzzy set
A on M is an object having the form A = {(x, µA(x))|x ∈ X}, where
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µA denotes the degree of membership function that assigns each ele-
ment x ∈ M , a complex number µA(x) lies within the unit circle in
the complex plane. We shall assume that µA(x) will be represented by
rA(x)e

iωA(x), where i =
√
−1, and rA : M → [0, 1] and ωA : M → [0, 2π].

The term rA(x) is said to be phase term and ωA(x) is said to be ampli-
tude term. Note that by setting ω(x) = 0, we turn back to the traditional
fuzzy subset.

Let µ1 = r1e
ω1 and µ2 = r2e

ω2 be two complex numbers lie within
the unit circle in the complex plane. By µ1 ≤ µ2 , we mean r1 ≤ r2 and
ω1 ≤ ω2 .

Three constant complex fuzzy sets 1̃, 0̃ and ĩ are defined by

µ
1̃
(x) = r

1̃
(x)eiω1̃

(x), r
1̃
(x) = 1, ω

1̃
(x) = 2π, ∀x ∈ M

µ
0̃
(x) = r

0̃
(x)eiω0̃

(x), r
0̃
(x) = 0, ω

0̃
(x) = 0, ∀x ∈ M

µ
ĩ
(x) = r

ĩ
(x)e

iω
ĩ
(x)

, r
ĩ
(x) = 0, ω

ĩ
(x) =

π

2
, ∀x ∈ M

Definition 1.2. [13] A T -norm T is a function T : [0, 1]× [0, 1] → [0, 1]
having the following four properties:

(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity)

for all x, y, z ∈ [0, 1].
We say that T is idempotent if for all x ∈ [0, 1], T (x, x) = x.

Example 1.3. [13]
(1) Standard intersection T -norm Tmin(x, y) = min{x, y}
(2) Bounded sum T -norm Tb(x, y) = max{0, x+ y − 1}
(3) algebraic product T -norm Tp(x, y) = xy

Definition 1.4. A C-conorm C is a function C : [0, 1] × [0, 1] → [0, 1]
having the following four properties:

(C1) C(x, 0) = x (neutral element),
(C2) C(x, y) ≤ C(x, z) if y ≤ z (monotonicity),
(C3) C(x, y) = C(y, x) (commutativity),
(C4) C(x,C(y, z)) = C(C(x, y), z) (associativity)

for all x, y, z ∈ [0, 1].
We say that the C-conorm C is idempotent if ∀x ∈ [0, 1], C(x, x) = x.

Example 1.5. (1) Standard union C-conorm Cmax(x, y) = max{x, y}
(2) Bounded sum C-conorm Cb(x, y) = max{1, x+ y}
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(3) Algebraic product C-conorm Cp(x, y) = x+ y − xy

Lemma 1.6. Consider a T -norm T and a C-conorm C (briefly (T,C)-
norm). Then for all x, y, z, w ∈ [0, 1] we have

T (x, y) ≤ x ∧ y,

C(x, y) ≥ x ∨ y,

T
(
T (x, y), T (z, w)

)
= T

(
T (x, z), T (y, w)

)
,

C
(
C(x, y), C(z, w)

)
= C

(
C(x, z), C(y, w)

)
,

2. Main result

In this section after some definitions and theorems, we define (anti)
complex gradation of openness under T -norm (C-conorm) and then
we introduce T -complex (C-anti complex) fuzzy topological space with
(anti) complex gradation of openness. Also we define the concept of
the spiral T -norm of a countable subset {xi|i ∈ N} of [0, 1] and using
it we prove that the set of all T -complex gradations of openness on X
(MT(X), ≤) is a semicomplete lattice

Definition 2.1. Let V be a k-vector space. A complex fuzzy subset
B = {(x, µB (x))|x ∈ X} of V is called a complex fuzzy subspace under
T -norm if µB (x) = rB (x)e

iω
B
(x), such that

rB (γx+ λy) ≥ T
(
rB (x), rB (y)

)
, ωB (γx+ λy) ≥ min

(
ωB (x), ωB (y)

)
for any x, y ∈ V and γ, λ ∈ k. Then we can write briefly B is a T -
complex fuzzy subspace of V or B ∈ TCF (V ).

Example 2.2. Let E = ΛRm be an exterior algebra on Rm with
anticommutative generators {ξ1, . . . , ξm}. Hence ξ2i = 0, and ξj ∧ ξi =
−ξi ∧ ξj for all 1 ≤ i, j ≤ m. Then each ξ ∈ E has the form

ξ =
∑

1≤i1<...<ik≤m

αi1...ik
ξi1 ∧ . . . ∧ ξik , αi1...ik

∈ R.

We define complex fuzzy subset B of E by B = rBe
iω

B ,
rB (ξi) = ri, ωB (ξi) = ti, ri ∈ [0, 1], ti ∈ [0, 2π]

for all 1 ≤ i, j ≤ m and
rB (ξ) = sup

1≤i1<...<ik≤m

{
T
(
. . . T (T (ri1 , ri2), ri3), . . . , rik

)}
, (2.1)

ωB (ξ) = sup
1≤i1<...<ik≤m

{
min

(
. . .min(min(ti1 , ti2), ti3), . . . , tik .

)}
. (2.2)



Semicomplete Lattice of All T -Complex Gradations of Openness on X 5

We show that B is a T -complex fuzzy subspace of E:
For each ξ, η ∈ E and γ, λ ∈ k, we have

η =
∑

1≤j1<...<jl≤m

βj1...jl
ξj1 ∧ . . . ∧ ξjl , βj1...jl

∈ R

T
(
rB (ξ), rB (η)

)
= T

(
sup1≤i1<...<ik≤m

{
T
(
. . . T (T (ri1 , ri2), ri3), . . . , rik

)}
,

sup1≤j1<...<jl≤m

{
T
(
. . . T (T (rj1 , rj2), rj3), . . . , rjk

)})
≤ sup1≤i1<...<ik≤m

{
T
(
. . . T (T (ri1 , ri2), ri3), . . . , rik

)}
,∨

sup1≤j1<...<jl≤m

{
T
(
. . . T (T (rj1 , rj2), rj3), . . . , rjk

)}
= rB (γ ξ + λ η),

Similarly we can prove
max

(
ωB (ξ), ωB (η)

)
≤ ωB (γ ξ + λ η).

Definition 2.3. Let V be a k-vector space. An Anti complex fuzzy
subset B = {(x, µB (x))|x ∈ X} of V is called an anti complex fuzzy
subspace under C-conorm if µB (x)) = rB (x)e

iω
B
(x),

rB (γx+ λy) ≤ C
(
rB (x), rB (y)

)
, ωB (γx+ λy) ≤ max

(
ωB (x), ωB (y)

)
for any x, y ∈ V and γ, λ ∈ k. Then we can write briefly B is a C-anti
complex fuzzy subspace of V or B ∈ CACF (V ).

Example 2.4. Let E = ΛR2 be an exterior algebra on Rm with anti-
commutative generators {ξ1, ξ2}. Hence ξ21 = 0, ξ22 = 0, and ξ2 ∧ ξ1 =
−ξ1 ∧ ξ2. Then each ξ ∈ E has the form

ξ = α1 ξ1 + α2 ξ2 + α12 ξ1 ∧ ξ2, 0 ̸= α1 , α2 , α12 ∈ R
We define anti complex fuzzy subset G of E by G = rGe

iω
G ,

rG(ξi) = ri, ωG(ξi) = ti, ri ∈ [0, 1], ti ∈ [0, 2π]

for i = 1, 2 and rG(ξ1∧ ξ2) = C(r1, r2), ωG(ξ1∧ ξ2) = max(t1, t2). Also
rG(ξ) = max{r1, r2, C(r1, r2)} = C(r1, r2)

ωG(ξ) = max{t1, t2,max(t1, t2)} = max(t1, t2).

We show that G is a C-anti complex fuzzy subspace of E:
For each ξ, η ∈ E and γ, λ ∈ k, we have

η = β1 ξ1 + β2 ξ2 + β12 ξ1 ∧ ξ2, 0 ̸= β1 , β2 , β12 ∈ R

γξ + λη = (γα1 + λβ1) ξ1 + (γα1 + λβ1) ξ2 + (γα12 + λβ12) ξ1 ∧ ξ2.
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C
(
rG(ξ), rG(η)

)
= C

(
C(r1, r2), C(r1, r2)

)
≥ C(r1, r2)

∨
C(r1, r2)

= C(r1, r2)

= rG(γ ξ + λ η),

Similarly we can prove

max
(
ωG(ξ), ωG(η)

)
≥ ωG(γ ξ + λ η).

Definition 2.5. Let A = {(x, µA(x))} and B = {(x, µB (x))} be two
complex fuzzy subsets of a nonempty set M . We define T -complex
fuzzy subset A ∩B by µA∩B (x) = rA∩B (x)e

iω
A∩B

(x),

rA∩B (x) = T
(
rA(x), rB (x)

)
, ωA∩B (x) = min

(
ωA(x), ωB (x).

)
and T -complex fuzzy subset A ∪B by µA∪B (x) = rA∪B (x)e

iω
A∪B

(x),

rA∪B (x) = C
(
rA(x), rB (x)

)
, ωA∪B (x) = max

(
ωA(x), ωB (x)

)
.

Example 2.6. Let M = {x1, x2, x3} and

A = {(x1, 0.5ei0.4π), (x2, 0.6e
iπ), (x3, 0.8e

i0.7π)}

and
B = {(x1, 0.3ei0.6π), (x2, 0.5e

i2π), (x3, 0.9e
i0.6π)}

be two complex fuzzy subsets of M . Then A∩B and A∪B are defined
by:

A ∩B = {(x1, 0.3ei0.4π), (x2, 0.5e
iπ), (x3, 0.8e

i0.6π)}

A ∪B = {(x1, 0.5ei0.6π), (x2, 0.6e
i2π), (x3, 0.9e

i0.7π)}

Definition 2.7. Let A = {(x, µA(x))} and B = {(x, µB (x))} be two
complex fuzzy subsets of a k-vector space V . Then T -complex fuzzy
subsets A+B and γ.A of V for each γ ∈ k, are defined by:

µA+B (x) = rA+B (x)e
iω

A+B
(x),

rA+B (x) =

{
supx=a+b {T

(
rA(a), rB (b)

)
} if x = a+ b

0 elsewhere

ωA+B (x) =

{
supx=a+b {min

(
ωA(a), ωB (b)

)
} if x = a+ b,

0 elsewhere
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for all x ∈ X, and µγ.A(x) = rγ.A(x)e
iω

γ.A
(x),

rγ.A(x) =


rA(

1
γx) if γ ̸= 0

1 if γ = 0, x = 0
0 if γ = 0, x ̸= 0

ωγ.A(x) =

{
ωA(

1
γx) if γ ̸= 0

0 if γ = 0.

for all x ∈ X. Further if A ∩B = 0̃, then A+B is said to be the direct
sum and denoted by A⊕B.

Example 2.8. Let V = {v|v = c1e1 + c2e2} where e1 = (1, 0), e2 =
(0, 1) and c1, c2 ∈ R. Consider T -norm Tmin. Let
A = {(0, 0e0), (c1e1, 0.8eiπ), (c2e2, 0.2ei2π), (c1e1 + c2e2, 0.2eiπ)}

and
B = {(0, 0e0), (c1e1, 0.6ei0.5π), (c2e2, 0.4ei0.7π), (c1e1+c2e2, 0.4e

i0.5π)}
be two complex fuzzy subsets of V . Then T -complex fuzzy subsets A+B
and γ.A of V for each γ ∈ k, are defined by:

A+B = {(0, 0e0), (c1e1, 0ei0), (c2e2, 0ei0), (c1e1 + c2e2, 0.4ei0.5π)},
and
γ.A = {(0, 0e0), (c1e1, 0.8eiπ), (c2e2, 0.2ei2π), (c1e1 + c2e2, 0.2eiπ)}

when γ ̸= 0 and
γ.A = {(0, 1e0), (c1e1, 0ei0), (c2e2, 0ei0), (c1e1 + c2e2, 0ei0)}

when γ = 0. We compute µA+B(c1e1+ c2e2) and other cases are obvios:
Let c1e1 + c2e2 = (a1e1 + a2e2) + (b1e1 + b2e2). Then

T
(
rA(a1e1 + a2e2), rB (b1e1 + b2e2)

)
= Tmin(0.2, 0.4) = 0.2

T
(
rA(c1e1), rB (c2e2)

)
= Tmin(0.8, 0.4) = 0.4

Hence rA+B = max(0.2, 0.4) = 0.4. Also

min
(
ωA(a1e1 + a2e2), ωB (b1e1 + b2e2)

)
= min(π, 0.5π) = 0.5π

min
(
ωA(c1e1), ωB (c2e2)

)
= min(π, 0.7π) = 0.7π

Hence ωA+B = max(0.5π, 0.7π) = 0.5π.

Theorem 2.9. i) Let A = {(x, µA(x))} and B = {(x, µB (x))} be
two T -complex fuzzy subspaces of V . Then A ∩ B = {(x, µA∩B (x))},
A + B = {(x, µA+B (x))} and γ.A = {(x, µγ.A(x))} for each γ ∈ k, are
also T -complex fuzzy subspaces of V.
ii) Let A = {(x, µA(x))} and B = {(x, µB (x))} be two C-anti complex
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fuzzy subspaces of V. Then A∪B = {(x, µA∪B (x))} is a C-anti complex
fuzzy subspace of V.

Proof. We prove (ii) and (i) is similar.
rA∪B (γx+ λy) = C

(
rA(γx+ λy), rB (γx+ λy)

)
≤ C

(
C
(
rA(x), rA(y)

)
, C

(
rB (x), rB (y)

))
= C

(
C
(
rA(x), rB (x)

)
, C

(
rA(y), rB (y)

))
= C

(
rA∪B (x), rA∪B (y)

)
ωA∪B (γx+ λy) = max

(
ωA(γx+ λy), ωB (γx+ λy)

)
≤ max

(
max

(
ωA(x), ωA(y)

)
,max

(
ωB (x), ωB (y)

))
= max

(
max

(
ωA(x), ωB (x)

)
,max

(
ωA(y), ωB (y)

))
= max

(
ωA∪B (x), ωA∪B (y)

)
□

Definition 2.10. Let B = {(x, µB (x))} be a complex fuzzy subset of
a group G. Then B is called a complex fuzzy subgroup of G, under
T -norm (an anti complex fuzzy subgroup of G under C-conorm), if it
satisfies two following conditions:

i) rB (xy) ≥ T
(
rA(x), rB (x)

)
, ωB (xy) ≥ min

(
ωA(x), ωB (x)

)
,(

rB (xy) ≤ C
(
rA(x), rB (x)

)
, ωB (xy) ≤ max

(
ωA(x), ωB (x)

))
,

ii) rB (x
−1) ≥ rB (x), ωB (x

−1) ≥ ωB (x)

for any x, y ∈ G.

Example 2.11. Let G = {e, a, b, c} be the Klein 4-group. Every element
is its own inverse, a2 = b2 = c2 = e and the product is defined by
ab = c, ac = b, bc = a. Let

A = {(e, 0.5ei1.2π), (a, 0.5ei1.2π), (b, 0.6ei1.2π), (c, 0.7ei1.2π)}

B = {(e, 0.64ei0.7π), (a, 0.4eiπ), (b, 0.5ei1.2π), (c, 0.6ei1.2π)}
be two complex fuzzy subsets of G. Consider algebraic product T -norm
Tp(x, y) = xy and algebraic product C-conorm Cp(x, y) = x+ y − xy.
Then A is a complex fuzzy subgroup of G under T -norm and B is an
anti complex fuzzy subgroup of G under C-conorm.

Definition 2.12. Let f be a mapping from a nonempty set M to a
nonempty set M ′. Let A = {(x, µA(x))} and B = {(x, µB (x))} be
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complex fuzzy subsets of M and M ′ respectively. Then the inverse
image of B under f , is a complex fuzzy subset f−1[B] defined by:

µ
f−1[B]

(x) = r
f−1[B]

(x)e
iω

f−1[B]
(x)

, r
f−1[B]

(x) = rB (f(x)),

ω
f−1[B]

(x) = ωB (f(x))

for all x ∈ V and the image of A under f is a complex fuzzy subset
f [A] = {(x, µ

f [A]
(x))} defined by: µ

f [A]
(y) = r

f [A]
(y)e

iω
f [A]

(y),

r
f [A]

(y) =

{
sup {rA(x)| x ∈ f−1(y)} if y ∈ f(M)
0 if y /∈ f(M)

ω
f [A]

(y) =

{
sup {ωA(x)| x ∈ f−1(y)} if y ∈ f(M)
0 if y /∈ f(M)

for all y ∈ M ′

Theorem 2.13. Let f be a linear mapping from the k-vector space V
to the k-vector space V ′.
i) If B = {(x, µB (x))} is a T -complex (C-anti complex) fuzzy subspace
of V, then f−1[B] is a T -complex (C-anti complex) fuzzy subspace of V.
ii) If A = {(x, µA(x))} is a T -complex fuzzy subspace of V, then f [A]
is a T -complex fuzzy subspace of V ′.

Proof. i) Let B be a T -complex fuzzy subspace of V. For each x, z ∈ V
and γ, δ ∈ k, we have

T
(
r
f−1[B]

(x), r
f−1[B]

(z)
)
= T

(
rB (f(x)), rB (f(z))

)
≤ rB

(
γf(x) + δf(z)

)
,

= rB
(
f(γx+ δz)

)
,

= r
f−1[B]

(γx+ δz)

Similarly we can prove

min
(
ω

f−1[B]
(x), ω

f−1[B]
(z)

)
≥ ω

f−1[B]
(γx+ δz).

Hence f−1[B] is a complex fuzzy subspace of V.
Now if B be a C-anti complex fuzzy subspace of V, then for each x, z ∈ V
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and γ, δ ∈ k, we have

C
(
r
f−1[B]

(x), r
f−1[B]

(z)
)
= C

(
rB (f(x)), rB (f(z))

)
≥ rB

(
γf(x) + δf(z)

)
,

= rB
(
f(γx+ δz)

)
,

= r
f−1[B]

(γx+ δz)

Similarly we can prove

max
(
ω

f−1[B]
(x), ω

f−1[B]
(z)

)
≥ ω

f−1[B]
(γx+ δz).

Hence f−1[B] is a C-anti complex fuzzy subspace of V .
ii) Let A be a T -complex fuzzy subspace of V . To prove that f [A] is
a T -complex fuzzy subspace of V ′, we show that for each y, w ∈ V ′ and
γ, δ ∈ k, we have

T
(
r
f [A]

(y), r
f [A]

(w)
)
≥ r

f [A]
(γy + δw).

1) If y, w ∈ f(V ), then we have

T
(
r
f [A]

(y), r
f [A]

(w)
)
= T

(
sup {rA(x)| x ∈ f−1(y)}, sup {rA(z)| z ∈ f−1(w)}

)
≥ sup {T

(
rA(x), rA(z)

)
| x ∈ f−1(y), z ∈ f−1(w)}

≥ sup {rA
(
γx+ δz

)
| x ∈ f−1(y), z ∈ f−1(w)}

≥ r
f [A]

(γy + δw).

2) If y ∈ f(V ) and w /∈ f(V ), we have

T
(
r
f [A]

(y), r
f [A]

(w)
)
= T

(
sup {rA(x)| x ∈ f−1(y)}, 0

)
≥ sup{T (rA(x), 0)| x ∈ f−1(y)} = 0

≥ 0 = r
f [A]

(γy + δw).

3) If y, w /∈ f(V ), we have

T
(
r
f [A]

(y), r
f [A]

(w)
)
= T

(
0, 0

)
= 0 ≥ 0 = r

f [A]
(γy + δw).

Similarly we can show that

min
(
ω

f [A]
(y), ω

f [A]
(w)

)
≥ ω

f [A]
(γy + δw).

□
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Theorem 2.14. Let f : V → V ′ be a linear mapping between the k-
vector spaces. Then for any T -complex fuzzy subspace A = {(x, µA(x))}
and D = {(x, µD(x))} of V and all λ ∈ k, we have

1) f [A+D] = f [A] + f [D],
2) f [λA] = λf [A].

Proof. 1) Let w ∈ V ′. We want to show that a = b where a = r
f [A+D]

(w)

and b = r
f [A]+f [D]

(w). Suppose first that w /∈ Imf . Then a = 0. Also if
x, y ∈ V ′ with x+ y = w, then at least one of the x, y is not in Imf and
thus r

f [A]
(x) ∧ r

f [D]
(y) = 0. So we have

T (r
f [A]

(x), r
f [D]

(y)) = 0. Hence b = 0 = a.
Assume next that w ∈ Imf . Given ε > 0, there exists z ∈ V with
f(z) = w such that rA+D(z) > a − ε. Then there exist x, y ∈ V with
x + y = z, such that T

(
rA(x), rD(y)

)
> a − ε. Since f(x) + f(y) = w,

we have

b = supw=u+v {T
(
r
f [A]

(u), r
f [D]

(v)
)
}

≥ T
(
r
f [A]

(f(x)), r
f [D]

(f(y))
)

≥ T
(
rA(x), rD(y)

)
> a− ε

Since ε > 0 was arbitrary, we get b ≥ a. On the other hand given ε > 0,
there exist u1 , u2 with u1 + u2 = w such that

b− ε < T
(
r
f [A]

(u1), rf [D]
(u2)

)
Taking ε < b (if b = 0 then a = 0 and we have nothing to prove),
we have that u1 , u2 ∈ Imf . Therefore, there exist x1, x2 in V with
u1 = f(x1), u2 = f(x2) such that

b− ε < T
(
rA(x1), rD(x2)

)
.

Since f(x1 + x2) = w, we get a > b− ε and hence a ≥ b, because ε > 0
was arbitrary. So a = b. Similarly we can prove that ω

f [A+D]
= ω

f [A]+f [D]
.
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2) Let w ∈ V ′, c = r
f [λA]

(w) and d = r
λf [A]

(w). If w /∈ Imf . Then
c = d = 0. Assume that w ∈ Imf . If λ ̸= 0,

c = sup {r
λA

(x)| f(x) = w}

= sup {rA( 1λx)| f(x) = w}

= sup {rA(y)| f(λy) = w}

= sup {rA(y)| λf(y) = w}

= r
λf [A]

(w) = d.

Next suppose that λ = 0. If w ̸= 0, then c = 0 and d = r
0f [A]

(w) = 0.
If w = 0, we have

c = sup {r0A(x)| f(x) = 0}

= sup {1| f(x) = 0}

= sup {rA(y)| y ∈ V }

= r
0f [A]

(0) = d.

In a similar manner, we can show that ω
f [λA]

= ω
λf [A]

and this completes
the proof. □
Definition 2.15. Let X = {(x, µA(x))|x ∈ X} be a complex fuzzy
subset of M . We denote the set of all complex fuzzy subsets of M which
are less or equal to X (called complex fuzzy subsets of X) by S1M

X . If τ
is a collection of complex fuzzy subsets of X, that satisfies the following
conditions:

1) X, ϕ ∈ τ ,
2) {Ai}i∈I ⊆ τ ⇒

∪
i∈I

Ai ∈ τ ,

3) A,B ∈ τ ⇒ A ∩B ∈ τ,

then (X, τ) is called a complex fuzzy topological space (Cfts).

Example 2.16. Let M = Rn and X = 1̃. Let B(a, r, b, c) = {(x, µ
B(a,r,b,c)

)|x ∈
X} be a complex fuzzy subset of M that µ

B(a,r,b,c)
equals to 0̃ outside

or on the sphere B(a, r) and equals to the function beic on M which
b : B(a, r) → [0, 1], c : B(a, r) → [0, 2π] are two arbitrary functions. We
call the fuzzy topology induced by
βCn = {B(a, r, b, c), a ∈ Rn, r ∈ R+, b : B(a, r) → [0, 1], c : B(a, r) → [0, 2π]}
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the complex fuzzy Euclidean topology of dimension n (denoted by τCn).

Definition 2.17. Let T : S1M
X → S1, be a mapping, lies within the

unit circle in the complex plane and be represented by
T(A) = r

T
(A)eiωT

(A) ∀A = {(x, µA(x))|x ∈ X} ∈ S1M
X , where

r
T
: S1M

X → [0, 1] and ω
T
: S1M

X → [0, 2π] satisfy:
(i) r

T
(X) = r

T
(0̃) = 1, ω

T
(X) = ω

T
(0̃) = 2π,

(ii) ∀A = {(x, µA(x))|x ∈ X}, B = {(x, µB(x))|x ∈ X} ∈ S1M
X

r
T
(A ∩ B) ≥ T

(
r
T
(A), r

T
(B)

)
, ω

T
(A ∩ B) ≥

(
ω

T
(A) ∧

ω
T
(B)

)
,

(iii) ∀{Aj = {(x, µAj
(x))|x ∈ X}, j ∈ J} ⊆ CIMX

r
T
(
∪

j∈J Aj) ≥
∧

i,j∈J T
(
r
T
(Ai), rT(Aj)

)
,

ω
T
(
∪

j∈J Aj) ≥ inf{ ω
T
(Aj), j ∈ J},

Then T is called complex gradation of openness under T -norm and
(X,T) is called a T -complex fuzzy topological space with T -complex
gradation of openness (TCG-fts).

Example 2.18. Let M = Rn and X = 1̃. As two useful examples, we
define TCn : S1M

X → I by:

TCn(B) =

{
1̃(B) B ∈ τCn ,
0̃(B) elsewhere.

and TCinf : S1M
X → I by: TCinf (B) = r

TCinf
(B)e

iω
TCinf

(B)
,

r
TCinf

(B) =

 1 B = 0̃,
inf{rB (x) : x ∈ M} 0̃ ̸= B ∈ τCn ,
0 elsewhere,

ω
TCinf

(B) =

 2π B = 0̃,
inf{ωB (x) : x ∈ M} 0̃ ̸= B ∈ τCn ,
0 elsewhere,

Obviously both are complex gradation of openness under T -norm
Tmin. In general if T be any complex gradation of openness under T -
norm T on 1Rn , such that suppT = τCn , then we call (1Rn , TCn) the
T -complex fuzzy Euclidean topological space with complex gradation of
openness.
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Definition 2.19. Let T : S1M
X → S1, be a mapping, lies within

the unit circle in the complex plane and be represented by T(A) =

r
T
(A)eiωT

(A) ∀A = {(x, µA(x))|x ∈ X} ∈ S1M
X , where r

T
: S1M

X →
[0, 1] and ω

T
: S1M

X → [0, 2π] satisfy:
(i) , r

T
(X) = r

T
(0̃) = 0, ω

T
(X) = ω

T
(0̃) =

π

2
,

(ii) ∀A = {(x, µA(x))|x ∈ X}, B = {(x, µB (x))|x ∈ X} ∈ S1M
X ,

r
T
(A∩B) ≤ C

(
r
T
(A), r

T
(B)

)
, ω

T
(A∩B) ≤ max

(
ω

T
(A), ω

T
(B)

)
,

(iii) ∀{Aj = {(x, µAj
(x))|x ∈ X}, j ∈ J} ⊆ CIMX ,

r
T
(
∪

j∈J Aj) ≤
∨

i,j∈J C
(
r
T
(Ai), rT(Aj)

)
,

ω
T
(
∪

j∈J Aj) ≤ sup{ ω
T
(Aj), j ∈ J}.

Then T is called anti complex gradation of openness under C-conorm,
and (X,T) is called a C-anti complex fuzzy topological space with anti
complex gradation of openness (CACG-fts).

Example 2.20. Let M = Rn and X = 1̃. We define TACn : S1M
X → I

by:

TACn(B) =

{
ĩ(B) B ∈ τCn ,
0̃(B) elsewhere.

and TACinf : S1M
X → I, by: TACsup(B) = r

TACsup
(B)e

iω
TACsup

(B)
,

r
TACsup

(B) =

{
sup{rB (x) : x ∈ M} 0̃ ̸= B ∈ τCn ,
0 elsewhere,

ω
TACsup

(B) =


π
2 B = 0̃,
sup{ωB (x) : x ∈ M} 0̃ ̸= B ∈ τCn ,
0 elsewhere,

Obviously both are anti complex gradation of openness under C-
conorm Cmax. In general if T be any anti complex gradation of open-
ness under C-conorm C on 1Rn , such that suppT = τCn , then we call
(1Rn , TACn) the C-anti complex fuzzy Euclidean topological space with
complex gradation of openness.

Theorem 2.21. Let T be idempotent and (X,T) be a T -complex fuzzy
topological space. For any r, s ∈ [0, 1], we define
Tr,s = {A ∈ LM

X : r
T
(A) ≥ r, ω

T
(A) ≥ s}. Then (X,Tr,s) is a complex

fuzzy topologiacal space.
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Proof. Since DomT = S1M
X for all A ∈ suppT, we have A is less than or

equal to X. Hence suppA ⊆ suppX. Also we have
i) r

T
(0̃) = r

T
(X) = 1 ≥ r, ω

T
(0̃) = ω

T
(X) = 2π ≥ s. Hence

ϕ, X ∈ Tr,s.
ii) For any A,B ∈ Tr,s, using the condition (ii) of Definition 2.8

and (T2) we have

r
T
(A ∩B) ≥ T

(
r
T
(A), r

T
(B)

)
≥ T (r, r) = r,

ω
T
(A ∩B) ≥ min

(
ω

T
(A), ω

T
(B)

)
≥ min(s, s) = s.

Thus A ∩B ∈ Tr,s.
iii) For all family {Aj = (µAj

, νAj
), j ∈ J} ⊆ CIMX , we have

r
T
(
∪
j∈J

Aj) ≥
∧

i,j∈J
T
(
r
T
(Ai), rT(Aj)

)
≥

∧
i,j∈J

T (r, r)) = r

ω
T
(
∪
j∈J

Aj) ≥ inf{ ω
T
(Aj), j ∈ J} ≥ s.

Hence
∪
j∈J

Aj ∈ Tr,s.

Therefore, (X,Tr,s) is a complex fuzzy topological space. □
Definition 2.22. Let T be a T -norm and {xi|i ∈ N} be a countable
subset of [0, 1]. Define

T 1
Ⓢ({xi}) = x1, T 2

Ⓢ({xi}) = T (x1, x2)

T 3
Ⓢ({xi}) = T (T (x1, x2), x3), T 4

Ⓢ({xi}) = T
(
T (T (x1, x2), x3), x4

)
T k
Ⓢ({xi}) = T

(
. . . T (T (x1, x2), x3), . . . , xk

)
Then we define

T∞
Ⓢ ({xi}) = lim

k→∞
T k
Ⓢ({xi})

called spiral T -norm of {xi}.

Lemma 2.23. Let T be a T -norm. Then the definition of spiral T -norm
of a countable subset {xi|i ∈ N} of [0, 1], is well defined. Also we have

T∞
Ⓢ ({xi}) ≤ xi ∀i ∈ N.

Proof. Using (T1) and (T2), we have
T 2
Ⓢ({xi}) ≤ T (x1, 1) = x1 = T 1

Ⓢ({xi})

T 3
Ⓢ({xi}) = T (T (x1, x2), x3) ≤ T (T (x1, x2), 1) = T (x1, x2) = T 2

Ⓢ({xi})
By contradiction on k, we can prove that {T k

Ⓢ({xi})} is a decreasing
sequence in [0, 1]. Since we assumed that the lattis [0, 1] is complete,
limk→∞ T k

Ⓢ({xi}) exists. Becouse of (T4), the associativity of T , this
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definition is independent of the ordering of the elements of this subset.
Hence definition of spiral T -norm of {xi} is well defined. □
Definition 2.24. Let {xi|i ∈ N} be a countable subset of [0, 2π]. Define

1
min
Ⓢ

({xi}) = x1,
2

min
Ⓢ

({xi}) = min(x1, x2)

3
min
Ⓢ

({xi}) = min(min(x1, x2), x3),

4
min
Ⓢ

({xi}) = min
(
min(min(x1, x2), x3), x4

)
k

min
Ⓢ

({xi}) = min
(
. . .min(min(x1, x2), x3), . . . , xk

)
Then we define

∞
min
Ⓢ

({xi}) = lim
k→∞

k
min
Ⓢ

({xi})

called spiral minimum of {xi}.

Lemma 2.25. The definition of spiral minimum of a countable subset
{xi|i ∈ N} of [0, 2π], is well defined. Also we have

∞
min
Ⓢ

({xi}) ≤ xi ∀i ∈ N.

Proof. Since [0, 2π] is a complete lattis, setting T = Tmin = min, we can
prove this lemma similar to the proof of Lemma 2.22. □
Definition 2.26. Let L be a lattice. If any countable subset {xi | i ∈
J ⊆ N} of L, has an infimum in L, then L is called a semicomplete
lattice.

Theorem 2.27. Assume that X is a complex fuzzy subset of M and T,C
are T -norm and C-conorm on [0, 1] respectively. Let MT(X) be the set
of all T -complex gradations of openness on X. We write T1 ≤ T2

if r
T1
(A) ≤ r

T2
(A), ω

T1
(A) ≤ ω

T2
(A) for all A ∈ S1M

X . Then
(MT(X), ≤), is a semicomplete lattice.

Proof. It is clear that ≤ between functions from S1M
X to [0, 1], is an

equivalence relation. Hence (MT(X),≤) is a partialy orderd set. Define
r
T0
(0̃) = r

T0
(X) = 1, ω

T0
(0̃) = ω

T0
(X) = 2π,

r
T0
(A) = 0, , ω

T0
(A) = 0 ∀A ∈ CIMX − {0̃, X},

r
T1
(A) = 1, ω

T1
(A) = 2π ∀A ∈ LM

X .

Then T0 and T1 are two T -complex gradation of openness on X. Since
r
T0
(A) ≤ r

T
(A) ≤ r

T1
(A), ω

T0
(A) ≤ ω

T
(A) ≤ ω

T1
(A) ∀A ∈ S1M

X ,
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we have T0, T1 are respectively 0, 1 in the lattice set MT(X).

We show that every countble subset {Tj | j ∈ N} of MT,T∗(X) has an
infimum in it.

Define T by T(A) = r
T
(A)eiωT

(A), r
T
(A) = T∞

Ⓢ ({r
Ti
(A)}) and

ω
T
(A) = min∞Ⓢ ({ω

Ti
(A)}). Since for each i ∈ N

r
Ti
(X) = r

Ti
(0̃) = 1, ω

Ti
(X) = ω

Ti
(0̃) = 2π,

we have
T
(
r
T1
(X), r

T2
(X)

)
= T (1, 1) = 1

T
(
T (r

T1
(X), r

T2
(X)), r

T3
(X)

)
= T (1, 1) = 1,

min
(
ω

T1
(X), ω

T2
(X)

)
= min(2π, 2π) = 2π

min
(
min(ω

T1
(X), ω

T2
(X)), ω

T3
(X)

)
= min(2π, 2π) = 2π,

By contradiction on k, we can show T k
Ⓢ({rTi

(X)}) = 1 and minkⓈ({ωTi
(X)}) =

0 for each k ∈ N. Therefore, r
T
(X) = 1 and ω

T
(X) = 2π. Similarly we

can show r
T
(0̃) = 1 and ω

T
(0̃) = 0.

Also for each A,B ∈ ILM
X , we have

T 3
Ⓢ({rTi

(A ∩B)}) = T

(
T
(
r
T1
(A ∩B)), r

T2
(A ∩B))

)
, r

T3
(A ∩B)

)

≥ T

(
T

(
T (r

T1
(A), r

T1
(B)), T

(
r
T2
(A), r

T2
(B))

)
, T

(
r
T3
(A), r

T3
(B)

))

= T

(
T

(
T
(
r
T1
(A), r

T2
(A)

)
, T

(
r
T1
(B), r

T2
(B)

))
, T

(
r
T3
(A), r

T3
(B)

))

= T

(
T

(
T
(
r
T1
(A), r

T2
(A)

)
, r

T3
(A)

)
, T

(
T
(
r
T1
(B), r

T2
(B)

)
, r

T3
(B)

))

= T

(
T 3
Ⓢ({rTi

(A)}), T 3
Ⓢ({rTi

(B)})
)
.

By contradiction on k, we can show for each k ∈ N we have

T k
Ⓢ({rTi

(A ∩B)}) ≥ T

(
T k
Ⓢ({rTi

(A)}), T k
Ⓢ({rTi

(B)})
)
.
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Therefore,
T(A ∩B) = T∞

Ⓢ ({r
Ti
(A ∩B)})

= limk→∞ T k
Ⓢ({rTi

(A ∩B)})

≥ limk→∞ T

(
T k
Ⓢ({rTi

(A)}), T k
Ⓢ({rTi

(B)}),
)

by (3.1)

≥ T

(
T∞
Ⓢ ({r

Ti
(A)}), T∞

Ⓢ ({r
Ti
(B)})

)
= T

(
r
T
(A), r

T
(B)

)
,

Similarly we can prove that ω
T
(A ∩B) ≥ min

(
ω

T
(A), ω

T
(B)

)
.

For any arbitrary family {Ak, k ∈ K} ⊆ ILM
X , we have

r
Tj
(
∪
k∈K

Ak) ≥
∧

k,l∈K
T
(
r
Tj
(Ak), rTj

(Al)
)

for each j ∈ N. Hence

T 3
Ⓢ({rTi

(
∪

k∈K Ak)}) = T

(
T
(
r
T1
(
∪

k∈K Ak)), rT2
(
∪

k∈K Ak))
)
, r

T3
(
∪

k∈K Ak)

)

≥ T

(
T

(∧
k,l∈K T

(
r
T1
(Ak), rT1

(Al)
)
,
∧

k,l∈K T
(
r
T2
(Ak), rT2

(Al)
))

,

∧
k,l∈K T

(
r
T3
(Ak), rT3

(Al)
))

≥
∧

k,l∈K T

(
T

(
T
(
r
T1
(Ak), rT1

(Al)
)
, T

(
r
T2
(Ak), rT2

(Al)
))

,

T
(
r
T3
(Ak), rT3

(Al)
))

=
∧

k,l∈K T

(
T

(
T
(
r
T1
(Ak), rT2

(Ak)
)
, T

(
r
T1
(Al), rT2

(Al)
))

,

T
(
r
T3
(Ak), rT3

(Al)
))

=
∧

k,l∈K T

(
T

(
T
(
r
T1
(Ak), rT2

(Ak)
)
, r

T3
(Ak)

)
,
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T

(
T
(
r
T1
(Al), rT2

(Al)
)
, r

T3
(Al)

))

=
∧

k,l∈K T

(
T 3
Ⓢ({rTi

(Ak)}), T 3
Ⓢ({rTi

(Al)})
)

By contradiction on k, we can show for each k ∈ N we have

T k
Ⓢ({rTi

(
∪
j

Aj)}) ≥
∧

k,l∈K
T

(
T k
Ⓢ({rTi

(Ak)}), T k
Ⓢ({rTi

(Al)})
)

Therefore,
T(

∪
j Aj) = T∞

Ⓢ ({r
Ti
(
∪

j Aj)})

= limk→∞ T k
Ⓢ({rTi

(
∪

j Aj)})

≥ limk→∞
∧

k,l∈K T

(
T k
Ⓢ({rTi

(Ak)}), T k
Ⓢ({rTi

(Al)})
)

=
∧

k,l∈K limk→∞ T

(
T k
Ⓢ({rTi

(Ak)}), T k
Ⓢ({rTi

(Al)})
)

=
∧

k,l∈K T

(
T∞
Ⓢ ({r

Ti
(Ak)}), T∞

Ⓢ ({r
Ti
(Al)})

)
=

∧
k,l∈K T

(
r
T
(Ak), rT(Al)

)
.

Similarly we can prove that

ω
T
(
∪
j∈J

Aj) ≥
∧

i,j∈J
min

(
ω

T
(Ai) ∨ ω

T
(Aj)

)
.

Hence T ∈ MT(X). Therefore, this lattis is semicomplete. □

3. Conclusion

In this paper, we define (anti) complex fuzzy subspaces of a k-vector
space V , under T -norm (C-conorm). Then we discuss various operations
between T -complex fuzzy sets and also the image and inverse image of a
T -complex fuzzy subspace under a function. We introduce complex (anti
complex) fuzzy topological space (X,T) with complex (anti complex)
gradation of openness under T -norm (C-conorm) which X is itself a T -
complex (C-anti complex) fuzzy subset of a nonempty set M . Finally
we define spiral T -norm of a sequence in [0, 1] and spiral minimum of
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a sequence in [0, 2π] and then using them, we prove that the set of all
T -complex gradations of openness (MT(X), ≤) on X, is a semicomplete
lattice

In the continuation of our research, the question arises, how can this
model be extended to complex fuzzy topological manifolds or fuzzy vec-
tor bundles?

Acknowledgements

We would like to thank the referees for carefully reading the manuscript
and making several helpful comments to increase the quality of it.

References
[1] M. Ali, F. Smarandache, Complex neutrosophic set, Neural Computing and

Applications, 28(7) (2017), 1817-1834.
[2] A. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, International

Conference on Fundamental and Applied Sciences, AIP Conference Pro-
ceedings, 1482 (2012), 464-470.

[3] M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups. Applied Math-
ematical Sciences, 11(41), (2017), 2011-2021.

[4] J. J. Buckley, E. Eslami, An introduction to fuzzy logic and fuzzy sets,
Springer-Verlag Berlin Heidelberg GmbH (2002).

[5] E. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis
and Applications, 24 (1968), 182-190.

[6] K. C. Chattopadhyay, R .N. Hazra, S .K. Samanta, Gradation of openness:
fuzzy topology, Fuzzy Sets and Systems, 49(2) (1992), 237-242.

[7] K. C. Chattopadhyay, S. k. Samanta, Fuzzy topology: Fuzzy closure oper-
ator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems,
54(2) (1993), 207-212.

[8] S. Dai, A generalization of rotational invariance for complex fuzzy opera-
tions, IEEE Transactions on Fuzzy Systems, 29(5) (2020), 1152-1159.

[9] S. Dai, Complex fuzzy ordered weighted distance measures, Iranian Jour-
nal of Fuzzy Systems, 17(6), (2020), 107-114.

[10] S. Dai, L. Bi, B. Hu, Distance measures between the interval-valued com-
plex fuzzy sets, Mathematics, b7(6), (2019), 549.

[11] S. Dick, Toward complex fuzzy logic, IEEE Transactions on Fuzzy Systems,
13(3) (2005), 405-414.

[12] V. Gregori, Vidal, A., Fuzziness in Chang’s fuzzy topological spaces, jour-
nal Rendiconti dell’Istituto di Matematica dell’Università di Trieste, XXX
(1999), 111-121.

[13] P. Hájek, Metamathematics of Fuzzy Logic, Springer Link, 1998.
[14] B. Hutton, Products of fuzzy topological spaces, Topology and its Applica-

tion, 11, 1980, 59-67.
[15] A. K. Katsaras, D. B. Liu, Fuzzy vector spaces and fuzzy topological vector

spaces, Journal of Mathematical Analysis and Applications, 58, 135-146,
(1977).



Semicomplete Lattice of All T -Complex Gradations of Openness on X 21

[16] M., Khan, M. Zeeshan, S. Z. Song, S. Iqbal, Types of Complex Fuzzy Re-
lations with Applications in Future Commission Market, Journal of Math-
ematics, 4, 2021, 1-14.

[17] Y. Liu, F. Liu, An adaptive neuro-complex-fuzzy-inferential modeling
mechanism for generating higher-order TSK models, Neurocomputing, 365
(2019), 94-101.

[18] X. Ma, J. Zhan, M. Khan, M. Zeeshan, S. Anis, A. S. Awan, Complex fuzzy
sets with applications in signals, Computational and Applied Mathematics,
38(4) (2019), 1-34.

[19] R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of
Mathematical Analysis and Applications, 56, (1979), 621-633.

[20] R. Lowen, Mathematics and fuzziness, some personal reflections, Informa-
tion Sciences, 36(1-2), (1985), 17-27.

[21] E. Lowen, R. Lowen, On measures of compactness in fuzzy topologi-
cal spaces, Journal of Mathematical Analysis and Applications, 131(2),
(1988), 329-340.

[22] M. Mostafavi, C∞ L-Fuzzy manifolds with gradation of openness and C∞

LG-fuzzy mappings of them, Iranian Journal of Fuzzy systems, 17(6),
(2020), 157-174.

[23] T. T. Ngan, L. T. H. Lan, M. Ali, D. Tamir, L. H. Son, T. M. Tuan,
N. Rishe, A. Kandel, Logic connectives of complex fuzzy sets, Romanian
Journal of Information Science and Technology, 21(4), (2018), 344-358.

[24] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE
Transactions on Fuzzy Systems, 10(2) (2002), 171-186.

[25] D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic.
IEEE Transactions on Fuzzy Systems, 11(4), (2003), 450-461.

[26] R. Rasuli, Anti complex fuzzy subgroups under s-norms. Engineering and
Applied Science Letters, 3(4), (2022), 1-10.

[27] A. P. Shostak, On a fuzzy topological structure, Rendiconti del Circolo
Matematico di Palermo Serie II, 11, (1985), 89-103.

[28] C. K. Wong, Fuzzy topology, product and quotient theorems, Journal of
Mathematical Analysis and Applications, 45(2), (1974), 512-521.

[29] P. Wuyts and R. Lowen, On local and global measures of separation in
fuzzy topological spaces, Fuzzy Sets and Systems, 19(1), (1986), 51-80.

[30] L. A. Zadeh, Fuzzy sets, Inform. Control 8, (1965), 338-353.
[31] L. A. Zadeh, Fuzzy Set Theory and its Applications, Kluwer Academic

Publishers, Boston, (1991).
[32] M. Zeeshan, M. Khan , Complex fuzzy sets with applications in decision-

making, Iranian Journal of Fuzzy Systems, 19(4), (2022), 147-163.
[33] G. Zhang, T. S. Dillon, K. Y. Cai, J. Ma, J. Lu, Operation properties and

δ-equalities of complex fuzzy sets, International Journal of Approximate
Reasoning, 50(8) (2009), 1227-1249.


	1.  Introduction
	2. Main result
	3. Conclusion
	References

