This paper is concerned with the existence and uniqueness of solutions for a class of frictional antiplane contact problems of p(x)-Kirchhoff type on a bounded domain of R2. Using an abstract Lagrange multiplier technique and the Schauder fixed point theorem we establish the existence of weak solutions. Imposing some suitable monotonicity conditions on the datum f1 the uniqueness of the solution is obtained.
Lapa, E. (2023). Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type. Caspian Journal of Mathematical Sciences, 12(2), 297-312. doi: 10.22080/cjms.2023.24478.1635
MLA
Eugenio Cabanillas Lapa. "Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type", Caspian Journal of Mathematical Sciences, 12, 2, 2023, 297-312. doi: 10.22080/cjms.2023.24478.1635
HARVARD
Lapa, E. (2023). 'Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type', Caspian Journal of Mathematical Sciences, 12(2), pp. 297-312. doi: 10.22080/cjms.2023.24478.1635
VANCOUVER
Lapa, E. Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type. Caspian Journal of Mathematical Sciences, 2023; 12(2): 297-312. doi: 10.22080/cjms.2023.24478.1635