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1. INTRODUCTION

In this work, we are concerned with the following Kirchhoff type prob-
lem

—M (L(u)) div(a(|Vu|P) [ VuP@ V) = f1 (2, u) in Q

u=>0 on Iy
M (L(w)a(|VulP) [ VuP@Vu.y = fo(x) on Ty
| M (L(u))a(|Vul ™) [Vul P Vuy| < g(z),
M (L(w))a(|VulP) [ VuP@) Vu.y = —g‘“ﬂ, if u#0 on I3

(1.1)
where 2 C R? is a bounded domain with smooth enough boundary
I, partitioned in three parts I';,I'9,I's such that meas (I';) > 0, (i =
1,2,3); i : QxR =R, fo: Ty >R, g: T3 - R, M: [0,+00[—
[mo, +oof and a : RTg — R are given functions, p € C(Q) and L(u) =
Jo 55| VulP@) da | with A(t) = [§ a(r) dr .

The study of the p(z)- Kirchhoff type equations with nonlinear bound-
ary conditions of different class have been a very interesting topic in
the recent years. Let us just quote[l, 8, [L6, 24] and references therein.
One reason of such interest is due to their frequent appearance in ap-
plications such as the modeling of electrorheological fluids [20], image
restoration [9], elastic mechanics [25] and continuum mechanics [3]. The
other reason is that the nonlocal problems with variable exponent, in ad-
dition to their contributions to the modelization of many physical and
biological phenomena, are very interesting from a purely mathematical
point of view as well; we refer the reader to [2, 18, 22]. Cojocaru-
Matei [6] studied the unique solvability of problem ([l.1)) in the case
M(s) =1=a(s), fi(z,u) = fi(z),p = constant > 2, which models the
antiplane shear deformation of a nonlinearly elastic cylindrical body in
frictional contact on I's with a rigid foundation; see, e.g. [21]. They used
a technique involving dual Lagrange multipliers, which allows to write
efficient algorithms to approximate the weak solutions; see [17]. For this
situation, the behavior of the material is described by the Hencky-type
constitutive law:

p(z)—2

o (x) = ktre(u(@))Is + p(@)||le? (u(@)) |2 e (u(x))

where o is the Cauchy stress tensor, tr is the trace of a Cartesian ten-
sor of second order,o(x) € is the infinitesimal strain tensor, w is the
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displacement vector,I3 is the identity tensor, k, u are material parame-
ters, p is a given function;e® is the desviator of the tensor € defined by
3
el =e— %(trs)Ig where tre = ) g;;; see for instance [15].
i=1

Inspired by the above works, we study the existence of weak solutions
for problem ([l.1)), under appropriate assumptions on M and fi, via
Lagrange multipliers and the Schauder fixed point theorem. In this
sense, we extend and generalize the result the main result in [6]. Also, we
state a simple uniqueness result under suitable monotonicity condition
on fl-

The paper is designed as follows. In Section 2, we introduce the math-
ematical preliminaries and give several important properties of p(z)-
Laplacian-like operator. We deliver a weak variational formulation with
Lagrange multipliers in a dual space. Section 3, is devoted to the proofs
of main results.

2. PRELIMINARIES

For the reader’s convenience, we point out some basic results on the
theory of Lebesgue-Sobolev spaces with variable exponent. In this con-
text we refer the reader to [L1, 20] for details. Firstly we state some
basic properties of spaces W1P()(Q) which will be used later. Denote
by S(€2) the set of all measurable real functions defined on 2. Two func-
tions in S(Q2) are considered as the same element of S(€2) when they are
equal almost everywhere. Write

Ci(Q)={h:heC(),h(x) >1 for any z € Q},

h™ :=minh(z), h':=maxh(z) forevery h € C(Q).
Q

Q2

Define
LP(Q) = {u € S(Q) : / lu(z)[P®) da < 400 for p € C4(Q)}
Q

with the norm
u(x

[ul Lot ) = ltlp(z) = inf{A >0 /Q |)\)|p(x) do <1},

and
WiP@)(Q) = {u € LP@(Q) : |Vu| € LPD(Q)}
with the norm

[ull1 p@) = [l o) @) + VUl Lo )

Proposition 2.1 ([14]). The spaces LP™®) (Q) and WP (Q) are sepa-
rable reflexive Banach spaces.
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Proposition 2.2 ([14]). Set p(u) = [, |u(z)[P® dz. For any u €
LP@)(Q), then
(1) for u#0, |ulym) = A if and only if p(%) = 1;
2) |ulp@) <1 (=1;>1) if and only if p(u) <1 (=1;> 1);
. - +
3) if lulyey > 1, then |ull,, < p(u) < [ullp;

limy sy oo [Uk|p(z) = 0 if and only if limg o p(ug) = 0;

(2)
(3)
, + -
E4; if |u]p(x) <1, then |u]§(x) < p(u) < \u|g(z);
(6) limy sy oo |Uk|pz) = +00 if and only if limg_, 1 p(ug) = +o0.

)
6

Proposition 2.3 ([12, 14]). If ¢ € C1(Q) and q(z) < p*(x) (q(z) <
p*(z)) for x € Q, then there is a continuous (compact) embedding
Whr)(Q) — LI@)(Q), where

Np(x .

400 if p(x) > N.

Proposition 2.4 ([14]). The conjugate space of LP*)(Q) is LI®)(Q),

where TI) + Wlx) = 1 holds a.e. in Q. For any u € LP®(Q) and

v E LQ(CC)(Q), we have the following Hélder-type inequality
1 1

wwdr| < (— + —) |l Vo)

\/Q [ < =+ Dby ol

We introduce the following closed space of W1P() ()
X={veW"@@Q):qu=0 a. e on I} (2.1)

where 7 denotes the Sobolev trace operator and I'; C I', meas (I'1) > 0,
therefore X is a separable reflexive Banach space. Now, we denote

HUHX = |Vu\p(w), u e X.
This functional represents a norm on X.
Proposition 2.5 ([4]). There ezists ¢ > 0 such that
1pz) < Cllullx  for allu € X.

[

Then, the norms ||.|[x and ||.||; »(») are equivalent on X.

We assume that a(z,€) : @ x R® — R™ is the continuous derivative
with respect to & of the continuous mapping ® : Q x R* — R, & =
P(x,8), ie. a(z,§) = VeP(x,£). The mappings a and ¢ verify the
following assumptions:

(®1) ®(x,0) = Ofor a.e.x € (.

(®2) There exists ¢ > 0 such that the function a satisfies the growth

condition |a(z, €)| < ¢(1 + |€[P®)~for a.e.x € Qand allé € RV,
where |.| denotes the Euclidean norm.
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(®3) The monotonicity condition

Csl¢ — <[P < (al@,€) — al,<)).(€ <)
holds for a.e. z € Q@ and V¢, ¢ € RY. With equality if and only
ifé=g
(®4) The inequalities |£|P(*) < a(x,€).€ < p(x)A(z,€) hold for a.e.
z € Qandall £ e RV,
(®5) There exists C5 > 0 such that for all §,¢ € RV and almost every
x €
ja(z,€) — a(z, )| < Os(1+ [¢[7) 72+ [ PI2) ¢ — |

The operator L is well defined and of class C1H(W1P(#)(Q),R) . The
Fréchet derivative operator of L in weak sense L' : X — X' is

(L'u,v) = / a(z,Vu).Vuvdz, Yu,v € X. (2.2)
Q

Proposition 2.6. The functional L : X — R is conver. The mapping
L' : X — X' is a strictly monotone, bounded homeomorphism, and is of
(S4) type, namely

Uy — u and limsup L' (uy) (uy, — u) < 0 implies u, — u,
n——+oo

where X' is the dual space of X.

Proof. This result is obtained in a similar manner as the one given in
[23], thus we omit the details. O

Now, we define the spaces

1
S :{u e W' ’p(x)(I‘) :Jve X suchthat u=~vv aeon F}

(2.3)
1 1
which is a real reflexive Banach space, —— + —— =1for all z € Q,
p(z)  p'(z)
and
Y = 9', the dual of the space S. (2.4)
Let us introduce a bilinear form

b: X xY — R :b(v,pu) = (1,7 )yygs (2.5)

a Lagrange multiplier A € Y,

(Nz)=— [ M(L()a(z,Vu).vzdl' , VzelS

I's
and the set of Lagrange multipliers

A:{ueY:(u,z></

g(@)|2(z)| vZes}. (2.6)
s
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From (@)4 we deduce that A € A.
Let u be a regular enough function satisfying problem (@) After
some computations we get (by using density results)

M(L(u))/ﬂa(x,Vu).Vvdx:/Qfl(a;,u)vda:

+ | fo(x)yvdl + M(L(u))/ a(xz, Vu)yv dl (2.7)
Ty I's

for allv € X , where u satisfies (@) 5 on '3

Now, we write problem (R.7) as an abstract mixed variational problem
(by means a Lagrange multipliers technique)

We define the following operators:

i) A: X — X' given by

(Au,v) = M(L(u))/ga(x,Vu).Vv dx, u,v € X.

2.8
ii) F: X — X', given by (28)

(F(u),v>:/gf1(:c,u)vda:+ g fo(x)ywde , wu,veX.

So, we are led to the following variational formulation of problem (@)
Problem 1. Find v € X and A € A such that

( Au,v ) +bv,\) = (F(u),v) , WYwelX (2.9)

bluyp—A) < 0 VueACY

To solve this problem, we will apply the Schauder fixed point theorem.
Firstly, we "freeze” the state variable u on the function F', that is we
fix w € X such that f = F(w) € X'.
Hence, we arrive at the following abstract mixed variational problem.
Problem 2. Given f € X’ find u € X and A € A such that

(Au,v)+bv,\) = (f,v) , YwelX
bluyp—A) < 0 VueACY. (2.10)

The unique solvability of Problem 2 is given under the following gener-
alized assumptions.
Let (X, |||lx) and (Y, |||[y) be two real reflexive Banach space.
(B1): A: X — X' is hemicontinuous;
(B2): 3h : X — R such that
(a) h(tw) = t"h(w) with v > 1, Vt > 0,w € X
(b) (Au—Av,u—v )y, x > h(v—u), Yu,v e X;
(c) V(z,) C X :xp, — 2 inX = h(z) < Vli_}rgo sup h(z,)
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(B3): A is coercive.
(B4): The form b: X x Y es bilinear, and
(i) Y(uy) € X tupy = win X = b(uy, A\y) — bu, \)
(i) VOA) CY : A, —myin Y = b(vy, A\y) = b(v, \)
b, i) o =

(iii) 3a > 0: inf sup
el pex [vlx|ply
u#0 v£0

(Bs): A is a bounded closed convex subset of Y such that Oy € A.
(Bs): 3C1 > 0,9 >0: h(v) > Ci|v||% , YveX.

Theorem 2.7. Assume (By1) - (Bg). Then there exists a unique solution
(u,\) € X x A of Problem 2.

Proof. See [§].

To solve Problem 1, we start by stating the following assumptions on M
) fl ) f2 and g

(A1) M : [0, +o0[— [mg,+oo[ is a locally Lipschitz-continuous and
nondecreasing function; mgy > 0.
(A2) f1:Q xR — Risa Caratheodory function satisfying
|f1($7t)’ <c+ C2|t|a($)_1 ) \V/(ZE,t) € QO xR,
a € CL(Q)with a(z) < p*(z), a™ < p~.
(A3) fo € LP'()(Iy), g € LY®)(T3), g(x) > 0 a.e on I3,
We have the following properties about the operator A.
Proposition 2.8. If (A1) holds, then
(i) A is locally Lipschitz continuous.
(ii) A is bounded, strictly monotone. Furthermore
(Au — Av,u —v) > kpllu — vl|%
where
b= p~ if lu—vlx > 1,
ptoifflu—vlx <L
So, we can take h(v) = kp||v\|§(.

(iii) i — +o0 as [lulx — +oo.

Proof. (i) Assume that M is Lipschitz in [0, R;] with Lipschitz constant
Ly, Ry > 0. We have, for u,v,w € B(0, Ry)

(Au — Av,w) = [M(L(u)) — M(L(v))] /Qa(x, Vu).Vwdz

+ M(L(v)) /Q(a(x, Vu) — a(z, Vv)).Vwdz.
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Using the Lipschitz continuity of M, the Holder inequality and (®5)
we get,
[(Au — Av, w)| < Cllu — vl|x|lwl|x,

which implies ||Au — Av||x» < C|lu — vl x.
ii)The functional S : X — X’ defined by

(Su,v) = / a(x,Vu).Vodz Yu,v € X, (2.11)
Q

is bounded (See [19]). Then
(Au,v) = M (L(u)){Su,v) Yu,v € X. (2.12)

Hence, since M is continuous and L is bounded (see Proposition @), A
is bounded.

To obtain that A is strictly monotone, we observe that L’ is strictly
monotone.Hence, L is strictly convex. Moreover, since M is nondecreas-
ing, M(t) = fot M (7)dr is convex in [0,+oo[. Consequently, Vs, t €
10, 1] with s +¢ =1 one has

M (L(su+tv)) < M(sL(u)+tL(v)) < sM(L(u))+tM(L(v)),Vu,v € X, u # v.
This shows W (u) = M (L(u)) is strictly convex, then ¥/ (u) = M (L(u))L' (u)

is strictly monotone, which means that A is strictly monotone.
To establish the inequality in ii), we apply Lemma 3 in [5] to obtain

(Au — Av,u —v) > / [M(L(u))a(z, Vu) — M(L(v))a(z, Vu)] .(Vv — Vu) dx

Q
Zmo/ i(|Vu—Vu]p("“”))dacZ mo/ IVu — VulP® da
o p(z) r* Jo
m ~
>l — vl

iii)For u € X with ||u||x > 1 we have

M(L(u))/ 1+M |VuP® | da
(Au,u)y Q V1 + | Vu|?@)

lullx Ju

>mollul% ~ = 400 as [ullx — +oo.
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Proposition 2.9. The formb: X xY — R defined in (@) is bilinear
and, it verifies i), ii) and iii) in assumption (By). Moreover

b(u, ) S/F g(x)|u(z)|dL for all p € A; (2.13)
b(u, A) :/F g(z)|u(x)|dl’ (2.14)
b(u, p— ) <0 for all u € A. (2.15)

Moreover, A is bounded.

Proof. The assertions i), ii), iii) and A bounded are word for word as
[6], Theorem 3, pags 138-139.

It is obvious to check () To justify (), we have to show that,
a.e. x € ()

V1 + |Vu|2r(@) ov

In fact, let x € Q . If |u(z)| = 0, then
|Vu|2P(@)=2 > du(x)

ML) (|Vup<x>2+ [Vupr® > )a““)u(x):g(:c)ru(:c)r

St vapr@ ) ov YT

Otherwise, if |u(x)| # 0,then

~M((L{w) (rwp@-? +

it joupirs T Noute) Gt
M((L(u)) <|V | + St [Vupr@ ) v (z) =g(x) u(x)]

=g(z)|u(x)| on I's
Furthermore, for all y € A :
bu, = A) = blu, ) = b(u, A) = (11,7 )y g — { AU )y yg- (2:16)

Hence, thanks to (), () and (), we obtain (R.15). O

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We are ready to solve problem 1. For this, we consider the Banach
S%CGS X and Y given in (@) and (@) respectively, and the set A in

(2.9)

Theorem 3.1. Suppose (B1) — (Bg) hold. Then problem 1 admits a
solution (u,\) € X x A.

Proof. We apply the Schauder fixed point theorem.
As has been said before, we "freeze” the state variable u on the func-
tion F', that is, we fix w € X and consider the problem:
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Find v € X and A € A such that
( Au,v )y +bv,\) = (f,v) , YweX (3.1)
bluyp—A) < 0 VueACY. (3.2)

with f = F(w) € X' Note that by the hypotheses on a and f;, given
in (A2), we have ) e LY@ Q <—> X'

By Theorem problem has a unique solution (uy, Ay) €
X x A.

Here we drop_the subscript w for simplicity. Setting v = w in (@)
and p = Oy in (B.2), using proposition @ ii), we get

kpllully < 2C1C[|wl[% +2C2Ca|Q] + ¢l falp @) ro)lullx — (3.3)
where

Jam iffw|x > 1,
ot if lw||x <1,

and C, is the embedding constant of X < LX(*)(Q).
Then

%
Jullx < [C(1+ [lwllx)]?=2
Therefore, either |u|lx <1 or
1
Jullx < [C1+ Jlwllx)]»=-. (3.4)
Since p~ > a™ + 1, we have
-0t —C — 400 ast— 400
Hence, there is some Ry > 0 such that
RP? '-CR°-C>0 (3.5)

From (@) and (@) we infer that if ||w||x < Ry then |lul|x < Ri.
Thus there exists Ry = min{1, R;} such that

llullx <Ry forallue X. (3.6)

For this constant, define K as
K ={v:veL*@Q),|v|]|x <R}

which is a nonempty, closed, convex subset of L**)(Q). We can define
the operator

T:K— L°®Q),  Tw=u,
where wu,, is the first component of the unique pair solution of the prob-
lem (@3’—

)y (Uws Aw) € X X A
From (B.G) ||Tw||x < Ry, for every w € K, so that T(K) C K.



Weak solvability for Frictional contact problems 307

Moreover, if (uy)y>1 (Uw, = u,) is a bounded sequence in K, then
from (B.0) is also bounded in X. Consequently, from the compact em-
bedding X < L*®)(Q), (Tw,),> is relatively compact in L**)(Q) and
hence, in K.

To prove the continuity of 7', let (w,),>1 be a sequence in K such
that

w, — w  strongly in L*®)(Q) (3.7)
and suppose u, = Tw,. The sequence {(u,, \,)},>1 satisfies
( Auy,v ) +bv,\) = (F(wy),v) , YWwelX
bluy,p—A,) < 0 VYueA

Using (@)—(@) we can extract a subsequence (u,, ) of (u,) and a sub-
sequence (wy, ) of (w,) such that

Uy, — u*weakly inX,

Uy, — u* strongly in L*®)(Q) and a.e. in Q,

: (3.8)
wy, —w a.e. in Q,
L(u,, ) — to, for some ty > 0,
and in view of continuity of M
M(L(u)) = M(to). (3.9)

We shall show that u* = Tw. To this end, by choosing u,, —u* as a
test function, we have

( Auy,,uy, — u: )+ b(uy, —u* \) = ( F(wy,), uy, —u®) (3.10)
—u

( Au™,uy, )+ b(uy, —u,N) = ( F(w),uy, —u* ).

Then

(M(L(u) — M(L(, )] /

*|p(x)
(1 + Ve ) IVu* P@ =2y (Y, — Vu*) de+
Q

V 1+ [Vur @)

*|p(2) p(z)
[(1 + ‘VU | > ’vu*|p(x)72vu* — |1+ |vqu|

V 1+ [Vur 2@ 1+ [V, [2260)

(Vuy, —Vu*)dzr + b(uy, —u*,\* —N\,,) = ( F(w) — F(wy,),uy, —u* ).

M(L(us)) |

Q

|V, \p(x)_ZVul,k

(3.11)
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Since b(uy, —u*, A* — X)) > 0, again by the inequality of Lemma 3 in
[Bl, p > 2, we obtain

Vu*|P
moCy | |V, — Vu*|P@ de + [M(L(u*) — M (L(u, / -
oGy || 1V, = 0P a4 V(L) = M (Bl [ (14—
\Vu* [P@) =20 (Y, — Vu*)de < | F(w,,) — F(w), u, —u* )|
(3.12)
But, using (@) we get

w*|P@)
\[M(L(u*)—M(L(qu)]/ (1+ [Vl )\Vu*\p(x)ZVu*.(Vul,k — Vu*) dz|

Q 1+ [Vu*|2r()
p(z)
Uy ‘/ V] IVt P@2V0* (Vuy, — V) dz| — 0 as k — oo,
V1+ Va2
(3.13)

where 9, = max{||uy, |[% , ||u,,k\|§;}+max{||u*||p7, ||u*H§(+} is bounded.

Also, by (Az), (@ and the compact embedding of X — L*®)(Q)
we deduce, thanks to the Krasnoselki theorem, the continuity of the
Nemytskii operator

Ny, : LY@(Q) — LY@)(Q)

w s Ny, (w), (3.14)

given by (Ng (w))(z) = fi(z,w(zx)), x €

Hence

1f1(wy,) = fr(w)]lar@) — 0
It follows from the definition of F' and the above convergence that
| ( F(wy,) — F(w),u, —u* )| —0 (3.15)

Thus, from ()—() we conclude that

Uy, — u*  strongly in X

Since the possible limit of the sequence (u,),>1 is uniquely determined,
the whole sequence converges toward u* € X

Therefore, from (B.7) and the continuous embedding X < L¥®)(Q),
we get u* = Tw = Uy
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On the other hand
b(v. ) _ (F(w).v) — (Au,v) _
vl x vl x -

1
[/ fl(x,w)vda:+/ fg(x)’yvdf] + Lallul|x + ||AO|| x/
[vllx Lo Ty

< O fr(w)llar(z) + 1f2llpr @), + | A0] x7 + 1)

(F'(w),v)
[l x

+ [ Al x

<

(3.16)
Next, using the boundedness of the operator Ny and the sequence
(uy)y>1, and the inf-sup property of the form b, we get ||\ ||y < C.
It follows that up to a subsequence
Ay — Ao weakly in Y

for some \g € Y.

So (u*, \*) and (u*, \g) are solutions of problem (@)—(@).Then, by
the uniqueness A\g = A* = A,. This shows the continuity of 7'

To prove that T' is compact, let (w,),>1 € K be bounded in LY@ ()
and u, = T(wy). Since (w,),>1 € K, ||lwy|]|x < C and then, up to a
subsequence again denoted by (w,),>1 we have

w, = w weakly in X
By the compact embedding Xinto L*®) (), it follows that
w, — w strongly in L) (Q).
Now, following the same arguments as in the proof of the continuity of
T we obtain
uy, =T(w,) = T(w) =u strongly in X
Thus
T(w,) — T(w) strongly in L@)(1).
Hence, we can apply the Schauder fixed point theorem to obtain that

T possesses a fixed point. This gives us a solution of (u, \g) € X x A of
Problem 1, which concludes the proof. O

Next, we consider the uniqueness of solutions of (@) To this end,
we also need the following hypothesis on the nonlinear term fi.

(A4) There exists by > 0 such that

(f(x,t) — f2,8)(t —s) < bolt — s|P™  ae. zeQ,VtseR.

Our uniqueness result reads as follows.
Theorem 3.2. Assume_that (Al) — (A4) hold. If, in addition 2 <
p for all x € Q, then (R.9) has a unique weak solution provided that

kp
bo i !

<1,
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where

. Jo |Vu[P®) dz
A= inf =—— - — >0.
uex\{0} [q [u[P@® dx

Proof. Theorem 3.1 gives a weak solution (u, A) € X xA. Let (u1, A1), (u2, A2)
be two solutions of (R.9). Considering the weak formulation of u; and
us we have

( Auj,v )y +b(v,N;) = (F(u),v) , YveX (3.17)
bluj,p—XN) < 0 YVueACY i=1,2.
By choosing v = u; —ug, p = Ao if i =1 and p = Ay if ¢ = 2, we have
(Auy — Aug,up —ug ) +b(ug —ug, A\ — Aa) = (F(uy) — F(ug),up —ug ) ,Yv e X
bup —ug, Ao — A1) < 0 YVueACY. (3.18)
It gives
(Aup — Aug,u; —ug) < (F(uy) — F(ug),u; —ug ).

Then, from (B.18) and repeating the argument used in the proof of
Proposition R.§, ii), we get

kpAJVU1—VMﬂmmdx§I(ﬁﬁu%—ﬁhmﬁu1—uzﬂ
<| / (r(sur) — i (e w2))(ur — us) daf
Q

= ’/ 1 — ol dz < bo)‘*_l/ Vuy — Vue[P® da
@ Q

Consequently when 3 lf\p_l < 1, it follows that u; = ue. This completes
0N\
the proof. O
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