Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran <http://cjms.journals.umz.ac.ir> <https://doi.org/10.22080/CJMS.2023.24478.1635>

Caspian J Math Sci. **12**(2)(2023), 297-312 (Research Article)

Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type

Eugenio Cabanillas Lapa [1](#page-0-0) 1 Instituto de Investigación, Facultad de Ciencias Matemáticas-UNMSM,Lima-Perú cleugenio@yahoo.com

ABSTRACT. This paper is concerned with the existence and uniqueness of solutions for a class of frictional antiplane contact problems of p(x)-Kirchhoff type on a bounded domain $\Omega \subseteq \mathbb{R}^2$. Using an abstract Lagrange multiplier technique and the Schauder fixed point theorem we establish the existence of weak solutions. Imposing some suitable monotonicity conditions on the datum f_1 the uniqueness of the solution is obtained.

Keywords: frictional antiplane contact problems; $p(x)$ -Kirchhoff equation; Schauder fixed point theorem; uniqueness

2000 Mathematics subject classification: 35J20, 35J60

297

¹Corresponding author: cleugenio@yahoo.com

Received: 30 October 2022 Revised: 30 October 2022

Accepted: 07 January 2023

How to Cite: Lapa, Eugenio Cabanillas. Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of $p(x)$ -Kirchhoff type, Casp.J. Math. Sci.,**12**(2)(2023), 297-312.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Converse Converse 2023 by University of Mazandaran. Subbmited for possible of

 $\overline{\mathbb{C}}$ Copyright \odot 2023 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

298 E. Cabanillas L.

1. Introduction

In this work, we are concerned with the following Kirchhoff type problem

$$
-M(L(u)) \operatorname{div}(a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u) = f_1(x, u) \quad \text{in} \quad \Omega
$$

\n
$$
u = 0 \quad \text{on } \Gamma_1
$$

\n
$$
M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u \cdot \nu = f_2(x) \quad \text{on} \quad \Gamma_2
$$

\n
$$
|M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u \cdot \nu| \le g(x),
$$

\n
$$
M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u \cdot \nu = -g\frac{u}{|u|}, \quad \text{if} \quad u \ne 0 \quad \text{on} \quad \Gamma_3
$$

\n(1.1)

where $\Omega \subseteq \mathbb{R}^2$ is a bounded domain with smooth enough boundary Γ, partitioned in three parts Γ₁, Γ₂, Γ₃ such that meas (Γ_{*i*}) > 0, (*i* = 1*,* 2*,* 3*)*; $f_1 : \Omega \times \mathbb{R} \to \mathbb{R}, f_2 : \Gamma_2 \to \mathbb{R}, g : \Gamma_3 \to \mathbb{R}, M : [0, +\infty] \to$ $[m_0, +\infty[$ and $a:\mathbb{R}^+_0 \to \mathbb{R}^+_0$ are given functions, $p \in C(\overline{\Omega})$ and $L(u) =$ \int_{Ω} 1 $\frac{1}{p(x)} |\nabla u|^{p(x)} dx$, with $A(t) = \int_0^t a(\tau) d\tau$.

The study of the $p(x)$ -Kirchhoff type equations with nonlinear boundary conditions of different class have been a very interesting topic in the recent years. Let us just quote $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ $[1, 8, 16, 24]$ and references therein. One reason of such interest is due to their frequent appearance in applications such as the modeling of electrorheological fluids [[20\]](#page-14-2), image restoration [[9](#page-14-3)], elastic mechanics [[25\]](#page-15-1) and continuum mechanics [\[3\]](#page-13-1). The other reason is that the nonlocal problems with variable exponent, in addition to their contributions to the modelization of many physical and biological phenomena, are very interesting from a purely mathematical point of view as well; we refer the reader to [\[2,](#page-13-2) [18,](#page-14-4) [22](#page-14-5)]. Cojocaru-Matei [\[6](#page-14-6)] studied the unique solvability of problem ([1.1\)](#page-1-0) in the case $M(s) = 1 = a(s)$, $f_1(x, u) \equiv f_1(x)$, $p = constant \geq 2$, which models the antiplane shear deformation of a nonlinearly elastic cylindrical body in frictional contact on Γ_3 with a rigid foundation; see, e.g. [\[21](#page-14-7)]. They used a technique involving dual Lagrange multipliers, which allows to write efficient algorithms to approximate the weak solutions; see [\[17\]](#page-14-8). For this situation, the behavior of the material is described by the Hencky-type constitutive law:

$$
\boldsymbol{\sigma}(x) = ktr\varepsilon(\boldsymbol{u}(x))I_3 + \mu(x)\|\varepsilon^D(\boldsymbol{u}(x))\|^{\frac{p(x)-2}{2}}\varepsilon^D(\boldsymbol{u}(x))
$$

where σ is the Cauchy stress tensor, *tr* is the trace of a Cartesian tensor of second order, $\sigma(x)$ ε is the infinitesimal strain tensor, *u* is the displacement vector, I_3 is the identity tensor, k, μ are material parameters, *p* is a given function; ϵ^D is the *desviator* of the tensor ϵ defined by $\varepsilon ^{D}=\varepsilon -\frac{1}{3}$ $\frac{1}{3}(tr \varepsilon) I_3$ where $tr \varepsilon = \sum$ 3 ε_{ii} ; see for instance [\[15](#page-14-9)].

i=1 Inspired by the above works, we study the existence of weak solutions for problem (1.1) (1.1) , under appropriate assumptions on *M* and f_1 , via Lagrange multipliers and the Schauder fixed point theorem. In this sense, we extend and generalize the result the main result in [\[6\]](#page-14-6). Also, we state a simple uniqueness result under suitable monotonicity condition on f_1 .

The paper is designed as follows. In Section 2, we introduce the mathematical preliminaries and give several important properties of $p(x)$ -Laplacian-like operator. We deliver a weak variational formulation with Lagrange multipliers in a dual space. Section 3, is devoted to the proofs of main results.

2. Preliminaries

For the reader's convenience, we point out some basic results on the theory of Lebesgue-Sobolev spaces with variable exponent. In this context we refer the reader to [[11,](#page-14-10) [20](#page-14-2)] for details. Firstly we state some basic properties of spaces $W^{1,p(x)}(\Omega)$ which will be used later. Denote by **S**(Ω) the set of all measurable real functions defined on Ω. Two functions in $\mathbf{S}(\Omega)$ are considered as the same element of $\mathbf{S}(\Omega)$ when they are equal almost everywhere. Write

$$
C_{+}(\overline{\Omega}) = \{ h : h \in C(\overline{\Omega}), h(x) > 1 \text{ for any } x \in \overline{\Omega} \},
$$

$$
h^{-} := \min_{\overline{\Omega}} h(x), \quad h^{+} := \max_{\overline{\Omega}} h(x) \quad \text{for every } h \in C_{+}(\overline{\Omega}).
$$

Define

$$
L^{p(x)}(\Omega) = \{ u \in \mathbf{S}(\Omega) : \int_{\Omega} |u(x)|^{p(x)} dx < +\infty \text{ for } p \in C_{+}(\overline{\Omega}) \}
$$

with the norm

$$
|u|_{L^{p(x)}(\Omega)} = |u|_{p(x)} = \inf \{ \lambda > 0 : \int_{\Omega} |\frac{u(x)}{\lambda}|^{p(x)} dx \le 1 \},\
$$

and

$$
W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \}
$$

with the norm

$$
||u||_{1,p(x)} = |u|_{L^{p(x)}(\Omega)} + |\nabla u|_{L^{p(x)}(\Omega)}.
$$

Proposition 2.1 ([[14\]](#page-14-11)). *The spaces* $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ are sepa*rable reflexive Banach spaces.*

300 E. Cabanillas L.

Proposition 2.2 ([[14\]](#page-14-11)). *Set* $\rho(u) = \int_{\Omega} |u(x)|^{p(x)} dx$. For any $u \in$ $L^{p(x)}(\Omega)$ *, then*

- (1) *for* $u \neq 0$, $|u|_{p(x)} = \lambda$ *if and only if* $\rho(\frac{u}{\lambda})$ $\frac{u}{\lambda}$) = 1*;*
- (2) $|u|_{p(x)} < 1$ (= 1; > 1) *if and only if* $\rho(u) < 1$ (= 1; > 1);
- (3) *if* $|u|_{p(x)} > 1$ *, then* $|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq |u|_{p(x)}^{p^{+}}$ $\frac{p}{p(x)}$;
- (4) *if* $|u|_{p(x)} < 1$ *, then* $|u|_{p(x)}^{p^+} \leq \rho(u) \leq |u|_{p(x)}^{p^-}$ *p*(*x*) *;*
- (5) $\lim_{k \to +\infty} |u_k|_{p(x)} = 0$ *if and only if* $\lim_{k \to +\infty} \rho(u_k) = 0$;
- (6) $\lim_{k \to +\infty} |u_k|_{p(x)} = +\infty$ *if and only if* $\lim_{k \to +\infty} \rho(u_k) = +\infty$ *.*

Proposition 2.3 ([[12](#page-14-12), [14\]](#page-14-11)). *If* $q \in C_+(\overline{\Omega})$ *and* $q(x) \leq p^*(x)$ ($q(x)$) $p^*(x)$) for $x \in \overline{\Omega}$, then there is a continuous (compact) embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ *, where*

$$
p^*(x) = \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N, \\ +\infty & \text{if } p(x) \ge N. \end{cases}
$$

Proposition 2.4 ([\[14](#page-14-11)]). The conjugate space of $L^{p(x)}(\Omega)$ is $L^{q(x)}(\Omega)$, $where \frac{1}{q(x)} + \frac{1}{p(x)} = 1$ *holds a.e. in* Ω *. For any* $u \in L^{p(x)}(\Omega)$ *and* $v \in L^{q(x)}(\Omega)$, we have the following Hölder-type inequality

$$
\left| \int_{\Omega} uv \, dx \right| \leq \left(\frac{1}{p^{-}} + \frac{1}{q^{-}} \right) |u|_{p(x)} |v|_{q(x)}.
$$

We introduce the following closed space of $W^{1,p(x)}(\Omega)$

$$
X = \{ v \in W^{1, p(x)}(\Omega) : \gamma u = 0 \quad \text{a. e. on} \quad \Gamma_1 \}
$$
 (2.1)

where γ denotes the Sobolev trace operator and $\Gamma_1 \subseteq \Gamma$, meas $(\Gamma_1) > 0$, therefore *X* is a separable reflexive Banach space. Now, we denote

$$
||u||_X = |\nabla u|_{p(x)}, \quad u \in X.
$$

This functional represents a norm on *X*.

Proposition 2.5 ([[4\]](#page-13-3)). *There exists* $c > 0$ *such that*

$$
||u||_{1,p(x)} \leq C||u||_X \quad \text{for all } u \in X.
$$

Then, the norms $\| \cdot \|_X$ and $\| \cdot \|_{1,p(x)}$ are equivalent on X.

We assume that $a(x,\xi)$: $\overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}^n$ is the continuous derivative with respect to ξ of the continuous mapping $\Phi : \overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}, \Phi =$ $\Phi(x,\xi)$, i,e. $a(x,\xi) = \nabla_{\xi} \Phi(x,\xi)$. The mappings *a* and Φ verify the following assumptions:

- $(\Phi_1) \Phi(x,0) = 0$ for a.e. $x \in \Omega$.
- (Φ_2) There exists $c > 0$ such that the function *a* satisfies the growth condition $|a(x,\xi)| \le c(1 + |\xi|^{p(x)-1})$ for a.e. $x \in \overline{\Omega}$ and all $\xi \in \mathbb{R}^N$, where *|.|* denotes the Euclidean norm.

 (Φ_3) The monotonicity condition

$$
C_3|\xi - \varsigma|^{p(x)} \le (a(x,\xi) - a(x,\varsigma)) \cdot (\xi - \varsigma)
$$

holds for a.e. $x \in \overline{\Omega}$ and $\forall \xi, \zeta \in \mathbb{R}^N$. With equality if and only if *ξ* = *ς*

- (Φ_4) The inequalities $|\xi|^{p(x)} \leq a(x,\xi) \cdot \xi \leq p(x)A(x,\xi)$ hold for a.e. $x \in \overline{\Omega}$ and all $\xi \in \mathbb{R}^N$.
- (Φ_5) There exists $C_5 > 0$ such that for all $\xi, \zeta \in \mathbb{R}^N$ and almost every $x \in \overline{\Omega}$

$$
|a(x,\xi) - a(x,\varsigma)| \le C_5(1+|\xi|^{p(x)-2} + |\varsigma|^{p(x)-2})|\xi - \varsigma|
$$

The operator *L* is well defined and of class $C^1(W^{1,p(x)}(\Omega), \mathbb{R})$. The Fréchet derivative operator of *L* in weak sense $L': X \to X'$ is

$$
\langle L'u, v \rangle = \int_{\Omega} a(x, \nabla u). \nabla v \, dx, \ \forall u, v \in X. \tag{2.2}
$$

Proposition 2.6. *The functional* $L: X \to \mathbb{R}$ *is convex. The mapping* $L' : X \to X'$ is a strictly monotone, bounded homeomorphism, and is of (*S*+) *type, namely*

$$
u_n \rightharpoonup u
$$
 and $\limsup_{n \to +\infty} L'(u_n)(u_n - u) \leq 0$ implies $u_n \to u$,

where X' is the dual space of X *.*

Proof. This result is obtained in a similar manner as the one given in [\[23](#page-14-13)], thus we omit the details. \Box

Now, we define the spaces

$$
S = \left\{ u \in W^{\frac{1}{p'(x)}, p(x)}(\Gamma) : \exists v \in X \quad \text{such that} \quad u = \gamma v \quad \text{a.e on} \quad \Gamma \right\}
$$
\n(2.3)

which is a real reflexive Banach space, $\frac{1}{p(x)} + \frac{1}{p'(x)}$ $\frac{1}{p'(x)} = 1$ for all $x \in \Omega$, and

$$
Y = S',
$$
 the dual of the space S. (2.4)

Let us introduce a bilinear form

$$
b: X \times Y \longrightarrow \mathbb{R} \quad :b(v,\mu) = \langle \mu, \gamma v \rangle_{Y \times S}, \tag{2.5}
$$

a Lagrange multiplier $\lambda \in Y$,

$$
\langle \lambda, z \rangle = -\int_{\Gamma_3} M(L(u)) a(x, \nabla u) \cdot \nu z \, d\Gamma \quad , \quad \forall z \in S
$$

and the set of Lagrange multipliers

$$
\Lambda = \left\{ u \in Y : \langle \mu, z \rangle \leqslant \int_{\Gamma_3} g(x) |z(x)| \quad , \quad \forall z \in S \right\}.
$$
 (2.6)

From $(1.1)₄$ $(1.1)₄$ we deduce that $\lambda \in \Lambda$.

Let *u* be a regular enough function satisfying problem (1.1) (1.1) . After some computations we get (by using density results)

$$
M(L(u)) \int_{\Omega} a(x, \nabla u). \nabla v \, dx = \int_{\Omega} f_1(x, u) v \, dx
$$

$$
+ \int_{\Gamma_2} f_2(x) \gamma v \, d\Gamma + M(L(u)) \int_{\Gamma_3} a(x, \nabla u) \gamma v \, d\Gamma \tag{2.7}
$$

for all $v \in X$, where *u* satisfies (1.1) (1.1) ₅ on Γ_3

Now, we write problem [\(2.7](#page-5-0)) as an abstract mixed variational problem (by means a Lagrange multipliers technique)

We define the following operators:

i) $A: X \to X'$, given by

$$
\langle Au, v \rangle = M(L(u)) \int_{\Omega} a(x, \nabla u). \nabla v \, dx, \ u, v \in X.
$$

\n*ii*) $F: X \to X',$ given by
\n
$$
\langle F(u), v \rangle = \int_{\Omega} f_1(x, u)v \, dx + \int_{\Gamma_2} f_2(x) \gamma v \, dx \quad , \quad u, v \in X.
$$
\n(2.8)

So, we are led to the following variational formulation of problem [\(1.1](#page-1-0)) **Problem 1.** Find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\langle Au, v \rangle + b(v, \lambda) = \langle F(u), v \rangle , \quad \forall v \in X \quad (2.9)
$$

$$
b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y
$$

To solve this problem, we will apply the Schauder fixed point theorem.

Firstly, we "freeze" the state variable u on the function F , that is we fix $w \in X$ such that $f = F(w) \in X'$.

Hence, we arrive at the following abstract mixed variational problem. **Problem 2.** Given $f \in X'$ find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\langle Au, v \rangle + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X
$$

$$
b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y.
$$
 (2.10)

The unique solvability of Problem 2 is given under the following generalized assumptions.

Let $(X, \| \|_X)$ and $(Y, \| \|_Y)$ be two real reflexive Banach space.

- (B_1) : $A: X \to X'$ is hemicontinuous;
- (B_2) : $\exists h: X \rightarrow \mathbb{R}$ such that (a) $h(tw) = t^{\gamma}h(w)$ with $\gamma > 1$, $\forall t > 0, w \in X$; **(b)** $\langle Au - Av, u - v \rangle_{X \times X} \ge h(v - u), \ \forall u, v \in X;$ $f(\mathbf{c}) \ \forall (x_\nu) \subseteq X : x_\nu \to x \text{ in } X \Longrightarrow h(x) \leq \lim_{\nu \to \infty} \sup h(x_\nu)$

 (B_3) : *A* is coercive. (B_4) : The form $b: X \times Y$ es bilinear, and $\mathbf{f}(\mathbf{i}) \ \forall (u_{\nu}) \subseteq X : u_{\nu} \to u \text{ in } X \Longrightarrow b(u_{\nu}, \lambda_{\nu}) \to b(u, \lambda)$ $\mathbf{f}(\mathbf{ii}) \ \forall (\lambda_{\nu}) \subseteq Y : \lambda_{\nu} \longrightarrow y \text{ in } Y \Longrightarrow b(v_{\nu}, \lambda_{\nu}) \longrightarrow b(v, \lambda)$ **(iii)** $\exists \widehat{\alpha} > 0 : \inf_{\mu \in I}$ $u \neq 0$ sup *v∈X v̸*=0 $b(v,\mu)$ $\frac{\partial (v, \mu)}{\partial |v|_X |\mu|_Y} \geq \hat{\alpha}$

 (B_5) : Λ is a bounded closed convex subset of *Y* such that $0_Y \in \Lambda$. **(***B***₆):** $\exists C_1 > 0, q > 0 : h(v) \ge C_1 ||v||_X^q$, $\forall v \in X$.

Theorem 2.7. *Assume* (B_1) *-* (B_6) *. Then there exists a unique solution* $(u, \lambda) \in X \times \Lambda$ of Problem 2.

Proof. See [\[6\]](#page-14-6).

To solve Problem 1, we start by stating the following assumptions on *M* , f_1 , f_2 and g

- (A_1) *M* : $[0, +\infty] \rightarrow [m_0, +\infty]$ is a locally Lipschitz-continuous and nondecreasing function; $m_0 > 0$.
- (A_2) $f_1: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function satisfying

$$
|f_1(x,t)| \le c_1 + c_2 |t|^{\alpha(x)-1}, \ \forall (x,t) \in \Omega \times \mathbb{R},
$$

$$
\alpha \in C_{+}(\overline{\Omega}) \text{with } \alpha(x) < p^*(x), \ \alpha^+ < p^-.
$$

 (A_3) $f_2 \in L^{p'(x)}(\Gamma_2), g \in L^{p'(x)}(\Gamma_3), g(x) \ge 0$ a.e on Γ_3 .

We have the following properties about the operator *A*.

Proposition 2.8. *If (A*1*) holds, then*

- (i) *A is locally Lipschitz continuous.*
- (ii) *A is bounded, strictly monotone. Furthermore*

$$
\langle Au - Av, u - v \rangle \ge k_p \|u - v\|_X^{\hat{p}}
$$

where

$$
\hat{p} = \begin{cases} p^- & \text{if } \|u - v\|_X > 1, \\ p^+ & \text{if } \|u - v\|_X \le 1. \end{cases}
$$

So, we can take $h(v) = k_p ||v||_X^{\hat{p}}$.

(iii)
$$
\frac{\langle Au, u \rangle}{\|u\|_X} \to +\infty
$$
 as $||u||_X \to +\infty$.

Proof. (i) Assume that *M* is Lipschitz in [0*, R*1] with Lipschitz constant *L*^{*M*}, *R*₁ > 0. We have, for *u*, *v*, *w* ∈ *B*(0*, R*₁)

$$
\langle Au - Av, w \rangle = [M(L(u)) - M(L(v))] \int_{\Omega} a(x, \nabla u). \nabla w \, dx
$$

$$
+ M(L(v)) \int_{\Omega} (a(x, \nabla u) - a(x, \nabla v)). \nabla w \, dx.
$$

Using the Lipschitz continuity of *M*, the Holder inequality and (Φ_5) we get

$$
|\langle Au - Av, w \rangle| \le C ||u - v||_X ||w||_X,
$$

which implies $||Au - Av||_{X'} \leq C||u - v||_X$.

ii)The functional $S: X \to X'$ defined by

$$
\langle Su, v \rangle = \int_{\Omega} a(x, \nabla u). \nabla v \, dx \qquad \forall u, v \in X,
$$
 (2.11)

is bounded (See [\[19](#page-14-14)]). Then

$$
\langle Au, v \rangle = M(L(u)) \langle Su, v \rangle \qquad \forall u, v \in X. \tag{2.12}
$$

Hence, since *M* is continuous and L is bounded (see Proposition [2.6\)](#page-4-0), *A* is bounded.

To obtain that *A* is strictly monotone, we observe that *L ′* is strictly monotone.Hence, *L* is strictly convex. Moreover, since *M* is nondecreasing, $\hat{M}(t) = \int_0^t M(\tau) d\tau$ is convex in $[0, +\infty[$. Consequently, $\forall s, t \in$ $]0,1[$ with $s + t = 1$ one has

$$
\hat{M}(L(su+tv)) < \hat{M}(sL(u)+tL(v)) \leq s\hat{M}(L(u))+t\hat{M}(L(v)), \forall u, v \in X, u \neq v.
$$

This shows $\Psi(u) = \hat{M}(L(u))$ is strictly convex, then $\Psi'(u) = M(L(u))L'(u)$ is strictly monotone, which means that *A* is strictly monotone.

To establish the inequality in ii), we apply Lemma 3 in [\[5\]](#page-14-15) to obtain

$$
\langle Au - Av, u - v \rangle \ge \int_{\Omega} \left[M(L(u)) a(x, \nabla u) - M(L(v)) a(x, \nabla u) \right] \cdot (\nabla v - \nabla u) dx
$$

$$
\ge m_0 \int_{\Omega} \frac{1}{p(x)} (\left| \nabla u - \nabla u \right|^{p(x)}) dx \ge \frac{m_0}{p^+} \int_{\Omega} |\nabla u - \nabla u|^{p(x)} dx
$$

$$
\ge \frac{m_0}{p^+} \|u - v\|_X^{\hat{p}}.
$$

iii)For *u* ∈ *X* with $||u||_X > 1$ we have

$$
\frac{\langle Au, u \rangle}{\|u\|_{X}} = \frac{M(L(u)) \int_{\Omega} \left[\left(1 + \frac{|\nabla u|^{p(x)}}{\sqrt{1 + |\nabla u|^{2p(x)}}} \right) |\nabla u|^{p(x)} \right] dx}{\|u\|}
$$

$$
\geq m_0 \|u\|_X^{p^--1} \to +\infty \text{ as } \|u\|_X \to +\infty.
$$

□

Proposition 2.9. *The form* $b: X \times Y \to \mathbb{R}$ *defined in* [\(2.5](#page-4-1)) *is bilinear and, it verifies i), ii) and iii) in assumption* (*B*4)*. Moreover*

$$
b(u,\mu) \le \int_{\Gamma_3} g(x)|u(x)| d\Gamma \text{ for all } \mu \in \Lambda; \tag{2.13}
$$

$$
b(u, \lambda) = \int_{\Gamma_3} g(x) |u(x)| d\Gamma \qquad (2.14)
$$

$$
b(u, \mu - \lambda) \le 0 \quad \text{for all } \mu \in \Lambda. \tag{2.15}
$$

Moreover, Λ *is bounded.*

Proof. The assertions i), ii), iii) and Λ bounded are word for word as [\[6\]](#page-14-6), Theorem 3, pags 138-139.

It is obvious to check (2.13) (2.13) (2.13) . To justify (2.14) (2.14) , we have to show that, a.e. $x \in \Omega$

$$
-M((L(u))\left(|\nabla u|^{p(x)-2}+\frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right)\frac{\partial u(x)}{\partial \nu}u(x)=g(x)|u(x)|
$$

In fact, let $x \in \Omega$. If $|u(x)| = 0$, then

$$
-M((L(u))\left(|\nabla u|^{p(x)-2}+\frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right)\frac{\partial u(x)}{\partial \nu}u(x)=0=g(x)|u(x)|\text{ on }\Gamma_3.
$$

Otherwise, if $|u(x)| \neq 0$, then

$$
-M((L(u))\left(|\nabla u|^{p(x)-2} + \frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right) \frac{\partial u(x)}{\partial \nu} u(x) = g(x) \frac{(u(x))^2}{|u(x)|}\n= g(x)|u(x)| \text{ on } \Gamma_3
$$

Furthermore, for all $\mu \in \Lambda$:

$$
b(u, \mu - \lambda) = b(u, \mu) - b(u, \lambda) = \langle \mu, \gamma u \rangle_{Y \times S} - \langle \lambda, \gamma u \rangle_{Y \times S}. \quad (2.16)
$$

Hence, thanks to (2.13) (2.13) (2.13) , (2.14) and (2.16) (2.16) , we obtain (2.15) (2.15) .

3. Existence and uniqueness of solutions

We are ready to solve problem 1. For this, we consider the Banach spaces *X* and *Y* given in ([2.1\)](#page-3-0) and ([2.4\)](#page-4-2) respectively, and the set Λ in [\(2.6](#page-4-3))

Theorem 3.1. *Suppose* $(B_1) - (B_6)$ *hold. Then problem* 1 *admits a solution* $(u, \lambda) \in X \times \Lambda$.

Proof. We apply the Schauder fixed point theorem.

As has been said before, we "freeze" the state variable *u* on the function F , that is, we fix $w \in X$ and consider the problem:

Find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\langle Au, v \rangle + b(v, \lambda) = \langle f, v \rangle \quad , \quad \forall v \in X \tag{3.1}
$$

$$
b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y. \tag{3.2}
$$

with $f = F(w) \in X'$. Note that by the hypotheses on α and f_1 , given in (A_2) , we have $f_1(w) \in L^{\alpha'(x)}(\Omega) \hookrightarrow X'$.

By Theorem [2.7](#page-6-0), problem [\(3.1](#page-9-0))-[\(3.2](#page-9-0)) has a unique solution $(u_w, \lambda_w) \in$ *X ×* Λ.

Here we drop the subscript *w* for simplicity. Setting $v = u$ in [\(3.1](#page-9-0)) and $\mu = 0$ *y* in ([3.2\)](#page-9-0), using proposition [2.8](#page-6-1) ii), we get

$$
k_p \|u\|_X^{\hat{p}} \le (2C_1 C_\alpha \|w\|_X^{\sigma} + 2C_2 C_\alpha |\Omega| + c_p |f_2|_{p'(x), \Gamma_2}) \|u\|_X \qquad (3.3)
$$

where

$$
\sigma = \begin{cases} \alpha^- & \text{if } \|w\|_X > 1, \\ \alpha^+ & \text{if } \|w\|_X \le 1, \end{cases}
$$

and C_{χ} is the embedding constant of $X \hookrightarrow L^{\chi(x)}(\Omega)$.

Then

$$
||u||_X \leq [C(1+||w||_X)]^{\frac{1}{\hat{p}-1}}.
$$

Therefore, either $||u||_X \leq 1$ or

$$
||u||_X \le [C(1 + ||w||_X)]^{\frac{1}{p^--1}}.
$$
\n(3.4)

Since $p^{-} > \alpha^{+} + 1$, we have

$$
t^{p^--1} - Ct^{\sigma} - C \to +\infty \qquad \text{as } t \to +\infty
$$

Hence, there is some $\bar{R_1} > 0$ such that

$$
\bar{R_1}^{p^- - 1} - C\bar{R_1}^{\sigma} - C \ge 0
$$
\n(3.5)

From [\(3.4](#page-9-1)) and [\(3.5](#page-9-2)) we infer that if $||w||_X \leq R_1$ then $||u||_X \leq R_1$. Thus there exists $R_1 = \min\{1, R_1\}$ such that

$$
||u||_X \le R_1 \quad \text{for all } u \in X. \tag{3.6}
$$

For this constant, define *K* as

$$
K = \{ v : v \in L^{\alpha(x)}(\Omega), ||v||_X \le R_1 \}
$$

which is a nonempty, closed, convex subset of $L^{\alpha(x)}(\Omega)$. We can define the operator

$$
T: K \to L^{\alpha(x)}(\Omega), \qquad Tw = u_w
$$

where u_w is the first component of the unique pair solution of the problem $(3.1)-(3.2), (u_w, \lambda_w) \in X \times \Lambda$ $(3.1)-(3.2), (u_w, \lambda_w) \in X \times \Lambda$ $(3.1)-(3.2), (u_w, \lambda_w) \in X \times \Lambda$ $(3.1)-(3.2), (u_w, \lambda_w) \in X \times \Lambda$

From [\(3.6](#page-9-3)) $||Tw||_X \leq R_1$, for every $w \in K$, so that $T(K) \subseteq K$.

Moreover, if $(u_\nu)_{\nu \geq 1}$ $(u_{w_\nu} \equiv u_\nu)$ is a bounded sequence in *K*, then from ([3.6\)](#page-9-3) is also bounded in *X*. Consequently, from the compact embedding $X \hookrightarrow L^{\alpha(x)}(\Omega)$, $(Tw_{\nu})_{\nu \geq 1}$ is relatively compact in $L^{\alpha(x)}(\Omega)$ and hence, in *K*.

To prove the continuity of T , let $(w_{\nu})_{\nu \geq 1}$ be a sequence in K such that

$$
w_{\nu} \to w \quad \text{strongly in } L^{\alpha(x)}(\Omega) \tag{3.7}
$$

and suppose $u_{\nu} = Tw_{\nu}$. The sequence $\{(u_{\nu}, \lambda_{\nu})\}_{\nu \geq 1}$ satisfies

$$
\langle Au_{\nu}, v \rangle + b(v, \lambda_{\nu}) = \langle F(w_{\nu}), v \rangle , \quad \forall v \in X
$$

$$
b(u_{\nu}, \mu - \lambda_{\nu}) \leq 0 \quad \forall \mu \in \Lambda.
$$

Using [\(3.6](#page-9-3))-[\(3.7](#page-10-0)) we can extract a subsequence (u_{ν_k}) of (u_{ν}) and a subsequence (w_{ν_k}) of (w_{ν}) such that

$$
u_{\nu_k} \to u^* \text{weakly in} X,
$$

\n
$$
u_{\nu_k} \to u^* \text{ strongly in } L^{\alpha(x)}(\Omega) \text{ and a.e. in } \Omega,
$$

\n
$$
w_{\nu_k} \to w \quad \text{a.e. in } \Omega,
$$

\n
$$
L(u_{\nu_k}) \to t_0, \text{ for some } t_0 \ge 0,
$$

\n(3.8)

and in view of continuity of *M*

$$
M(L(u_{\nu_k})) \to M(t_0). \tag{3.9}
$$

We shall show that $u^* = Tw$. To this end, by choosing $u_{\nu_k} - u^*$ as a test function, we have

$$
\langle Au_{\nu_k}, u_{\nu_k} - u^* \rangle + b(u_{\nu_k} - u^*, \lambda_{\nu}) = \langle F(w_{\nu_k}), u_{\nu_k} - u^* \rangle
$$

$$
\langle Au^*, u_{\nu_k} - u^* \rangle + b(u_{\nu_k} - u^*, \lambda^*) = \langle F(w), u_{\nu_k} - u^* \rangle.
$$
 (3.10)

Then

$$
[M(L(u^*) - M(L(u_{\nu_k})) \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x)-2} \nabla u^* . (\nabla u_{\nu_k} - \nabla u^*) dx +
$$

$$
M(L(u_{\nu_k})) \int_{\Omega} \left[\left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x)-2} \nabla u^* - \left(1 + \frac{|\nabla u_{\nu_k}|^{p(x)}}{\sqrt{1 + |\nabla u_{\nu_k}|^{2p(x)}}} \right) \right.
$$

$$
|\nabla u_{\nu_k}|^{p(x)-2} \nabla u_{\nu_k} \left[.(\nabla u_{\nu_k} - \nabla u^*) dx + b(u_{\nu_k} - u^*, \lambda^* - \lambda_{\nu_k}) = \langle F(w) - F(w_{\nu_k}), u_{\nu_k} - u^* \rangle .
$$

(3.11)

Since $b(u_{\nu_k} - u^*, \lambda^* - \lambda_{\nu_k}) \geq 0$, again by the inequality of Lemma 3 in [\[5\]](#page-14-15), $p \geq 2$, we obtain

$$
m_0 C_p \int_{\Omega} |\nabla u_{\nu_k} - \nabla u^*|^{p(x)} dx + [M(L(u^*) - M(L(u_{\nu_k}))] \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right)
$$

$$
|\nabla u^*|^{p(x)-2} \nabla u^* . (\nabla u_{\nu_k} - \nabla u^*) dx \leq |\langle F(w_{\nu_k}) - F(w), u_{\nu_k} - u^* \rangle|
$$
(3.12)

But, using ([3.8\)](#page-10-1) we get

$$
\left| \left[M(L(u^*) - M(L(u_{\nu_k})) \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x)-2} \nabla u^*. (\nabla u_{\nu_k} - \nabla u^*) \, dx \right| \right|
$$

$$
\leq \frac{\vartheta_{\nu_k}}{p^-} \left| \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x)-2} \nabla u^*. (\nabla u_{\nu_k} - \nabla u^*) \, dx \right| \to 0 \quad \text{as } k \to \infty,
$$

(3.13)

where $\vartheta_{\nu_k} = \max\{||u_{\nu_k}||_X^{p^-}, ||u_{\nu_k}||_X^{p^+}\} + \max\{||u^*||_X^{p^-}, ||u^*||_X^{p^+}\}$ is bounded.

Also, by (A_2) , (3.8) (3.8) and the compact embedding of $X \hookrightarrow L^{\alpha(x)}(\Omega)$ we deduce, thanks to the Krasnoselki theorem, the continuity of the Nemytskii operator

$$
N_{f_1}: L^{\alpha(x)}(\Omega) \to L^{\alpha'(x)}(\Omega)
$$

\n
$$
w \mapsto N_{f_1}(w),
$$
\n(3.14)

given by $(N_{f_1}(w))(x) = f_1(x, w(x)), \quad x \in \Omega.$ Hence

$$
||f_1(w_{\nu_k}) - f_1(w)||_{\alpha'(x)} \to 0
$$

It follows from the definition of *F* and the above convergence that

$$
|\langle F(w_{\nu_k}) - F(w), u_{\nu_k} - u^* \rangle| \to 0 \tag{3.15}
$$

Thus, from $(3.12)-(3.15)$ $(3.12)-(3.15)$ $(3.12)-(3.15)$ $(3.12)-(3.15)$ we conclude that

$$
u_{\nu_k} \to u^* \quad \text{ strongly in } X
$$

Since the possible limit of the sequence $(u_{\nu})_{\nu \geq 1}$ is uniquely determined, the whole sequence converges toward $u^* \in X$

Therefore, from [\(3.7](#page-10-0)) and the continuous embedding $X \hookrightarrow L^{\alpha(x)}(\Omega)$, we get $u^* = Tw \equiv u_w$.

On the other hand

$$
\frac{b(v,\lambda)}{\|v\|_X} = \frac{\langle F(w), v \rangle - \langle Au, v \rangle}{\|v\|_X} \le \frac{\langle F(w), v \rangle}{\|v\|_X} + \|Au\|_{X'}
$$

\n
$$
\le \frac{1}{\|v\|_X} \left[\int_{\Omega} f_1(x, w)v \, dx + \int_{\Gamma_2} f_2(x) \gamma v \, d\Gamma \right] + L_A \|u\|_X + \|A0\|_{X'}
$$

\n
$$
\le C(\|f_1(w)\|_{\alpha'(x)} + \|f_2\|_{p'(x), \Gamma_2} + \|A0\|_{X'} + 1)
$$
\n(3.16)

Next, using the boundedness of the operator N_{f_1} and the sequence $(u_{\nu})_{\nu \geq 1}$, and the inf-sup property of the form *b*, we get $\|\lambda_{\nu}\|_{Y} \leq C$. It follows that up to a subsequence

$$
\lambda_{\nu} \to \lambda_0 \quad \text{ weakly in } Y
$$

for some $\lambda_0 \in Y$.

So (u^*, λ^*) and (u^*, λ_0) are solutions of problem $(3.1)-(3.2)$ $(3.1)-(3.2)$ $(3.1)-(3.2)$ $(3.1)-(3.2)$. Then, by the uniqueness $\lambda_0 = \lambda^* \equiv \lambda_w$. This shows the continuity of *T*.

To prove that *T* is compact, let $(w_{\nu})_{\nu \geq 1} \subseteq K$ be bounded in $L^{\alpha(x)}(\Omega)$ and $u_{\nu} = T(w_{\nu})$. Since $(w_{\nu})_{\nu \geq 1} \subseteq K$, $||w_{\nu}||_X \leq C$ and then, up to a subsequence again denoted by $(w_{\nu})_{\nu \geq 1}$ we have

$$
w_{\nu} \to w \quad \text{ weakly in } X
$$

By the compact embedding *X* into $L^{\alpha(x)}(\Omega)$, it follows that

 $w_{\nu} \to w$ strongly in $L^{\alpha(x)}(\Omega)$ *.*

Now, following the same arguments as in the proof of the continuity of *T* we obtain

$$
u_{\nu} = T(w_{\nu}) \rightarrow T(w) = u
$$
 strongly in X

Thus

$$
T(w_{\nu}) \to T(w)
$$
 strongly in $L^{\alpha(x)}(\Omega)$.

Hence, we can apply the Schauder fixed point theorem to obtain that *T* possesses a fixed point. This gives us a solution of $(u, \lambda_0) \in X \times \Lambda$ of Problem 1, which concludes the proof. \Box

Next, we consider the uniqueness of solutions of [\(2.9](#page-5-1)). To this end, we also need the following hypothesis on the nonlinear term *f*1.

(A4) There exists $b_0 \geq 0$ such that

$$
(f(x,t) - f(x,s))(t-s) \le b_0|t-s|^{p(x)} \quad \text{a.e.} \quad x \in \Omega, \forall t, s \in \mathbb{R}.
$$

Our uniqueness result reads as follows.

Theorem 3.2. *Assume that* $(A1) - (A4)$ *hold. If, in addition* 2 \leq *p for all* $x \in \overline{\Omega}$ *, then* [\(2.9](#page-5-1)) *has a unique weak solution provided that*

$$
\frac{k_p}{b_0\lambda_*^{-1}} < 1,
$$

where

$$
\lambda_* = \inf_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^{p(x)} dx}{\int_{\Omega} |u|^{p(x)} dx} > 0.
$$

Proof. Theorem 3.1 gives a weak solution $(u, \lambda) \in X \times \Lambda$. Let (u_1, λ_1) , (u_2, λ_2) be two solutions of (2.9) (2.9) . Considering the weak formulation of u_1 and *u*² we have

$$
\langle Au_i, v \rangle + b(v, \lambda_i) = \langle F(u_i), v \rangle, \quad \forall v \in X \quad (3.17)
$$

$$
b(u_i, \mu - \lambda_i) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y \quad i = 1, 2.
$$

By choosing
$$
v = u_1 - u_2
$$
, $\mu = \lambda_2$ if $i = 1$ and $\mu = \lambda_1$ if $i = 2$, we have
\n $\langle Au_1 - Au_2, u_1 - u_2 \rangle + b(u_1 - u_2, \lambda_1 - \lambda_2) = \langle F(u_1) - F(u_2), u_1 - u_2 \rangle, \forall v \in X$
\n $b(u_1 - u_2, \lambda_2 - \lambda_1) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y.$ (3.18)

It gives

$$
\langle Au_1 - Au_2, u_1 - u_2 \rangle \le \langle F(u_1) - F(u_2), u_1 - u_2 \rangle.
$$

Then, from [\(3.18\)](#page-13-4) and repeating the argument used in the proof of Proposition [2.8,](#page-5-2) ii), we get

$$
k_p \int_{\Omega} |\nabla u_1 - \nabla u_2|^{p(x)} dx \leq |\langle f_1(u_1) - f_1(u_2), u_1 - u_2 \rangle|
$$

\n
$$
\leq |\int_{\Omega} (f_1(x, u_1) - f_1(x, u_2))(u_1 - u_2) dx|
$$

\n
$$
\leq |\int_{\Omega} |u_1 - u_2|^{p(x)} dx \leq b_0 \lambda_*^{-1} \int_{\Omega} |\nabla u_1 - \nabla u_2|^{p(x)} dx
$$

Consequently when $\frac{k_p}{b_0 \lambda_*^{-1}} < 1$, it follows that $u_1 = u_2$. This completes the proof. \Box

Acknowledgements. This research was partially supported by the Vicerectorado de Investigación-UNMSM-Perú.

REFERENCES

- [1] G.A. Afrouzi, M. Mirzapour, Eigenvalue problems for $p(x)$ -Kirchhoff type equations, Electron. J. Differential Equations 2013 (2013) 1–10, J. Math.**1** (2000), 1-11.
- [2] G.A. Afrouzi, N. T. Chung, Z. Naghizadeh, Multiple solutions for $p(x)$ -Kirchhoff type problems with Robin boundary conditions, Electron. J. Differential Equations, Vol. 2022 (2022), No. 24, pp. 1-16.
- [3] S. Antontsev , S. Shmarev , Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, (2006) (Chapter 1).
- [4] M. Boureanu , A. Matei , Nonlinear problems with *p*()-growth conditions and applications to antiplane contact models, Adv. Nonlinear Stud **14** (2014), 295–313.

- [5] E. Cabanillas L., Z. Huaringa, A nonlocal *p*(*x*)&*q*(*x*) elliptic transmission problem with dependence on the gradient Int. J. Appl. Math, **34** (1)(2021) 93-108.
- [6] M. Cojocaru , A. Matei, Well - posedness for a class of frictional contact models via mixed variational formulations, Nonlinear Anal RWA,**47**(2019) 127-141.
- [7] S.S. Chow , Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. **54** (|1989), 373-393.
- [8] N. T. Chung, Multiple solutions for a class of *p*(*x*)-Kirchhoff type problems with Neumann boundary conditions, Adv. Pure Appl. Math.,**4** (2) (2013), 165-177.
- [9] Y. Chen , S. Levine , R. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM Journal of Applied Mathematics **66** (2006), 1383–1406.
- [10] G. Dai, R. Ma, Solutions for a $p(x)$ -Kirchhoff-type equation with Neumann boundary data, Nonlinear Anal.TMA **12** (2011), 2666-2680.
- [11] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011.
- [12] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749–760.
- [13] X. L. Fan, Q. H. Zhang, Existence of solutions for *p*(*x*)-Laplacian Dirichlet problems, Nonlinear Anal. **52** (2003), 1843–1852.
- [14] X.L. Fan, D. Zhao,On the Spaces $L^{p(x)}$ and $W^{m,p(x)}$, J. Math. Anal. Appl.**263** (2001), 424–446.
- [15] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002.
- [16] M.K. Hamdani, N.T. Chung, D.D. Repov*š*, New class of sixth-order nonhomogeneous $p(x)$ -Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. **10** (2021), 1117–1131.
- [17] S. Hüeber, A. Matei, B. Wohlmuth, Efficient algorithms for problems with friction. SIAM J. Sci. Comput. **29**(1), 70–92 (2007). https://doi.org/10.1137/050634141.
- [18] E. Hurtado, O. Miyagaki , R. Rodrigues , Multiplicity of solutions to class of nonlocal elliptic problems with critical exponents, **45** (7)(2022) 3949- 3973.
- [19] M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators , Mediterr. J. Math. **9**(1)(2012) , 211-223
- [20] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
- [21] M. Sofonea , A. Matei, Variational inequalities with applications. A study of antiplane frictional contact problems. In: Advances in mechanics and mathematics, vol. 18. New York: Springer, 2009
- [22] N. Tsouli, M. Haddaoui M., E.M. Hssini , Multiple Solutions for a Critical p(x)-Kirchhoff Type Equations, Bol. Soc. Paran. Mat.**38**(4)(2020), 197- 211.
- [23] A. Zerouali, B. Karim, O. Chakrone, A. Anane, Existence and multiplicity of elliptic problems with nonlinear boundary conditions and variable exponents. Bol. Soc. Parana. Mat. (3)**33**(2)(2015), 121–131.

312 E. Cabanillas L.

- [24] C. Vetro, Variable exponent $p(x)$ -Kirchhoff type problem with convection, J. Math. Anal. Appl. **506** (2022) 125721.
- [25] V.V.Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., **50** (1986), 675–710.