Assume that $A$ and $B$ are unital $C^{*}$-algebras and $\varphi:A\rightarrow B$ is a unital positive linear map. We show that if $B$ is commutative, then for all $x,y \in A$ and $\alpha, \beta \in \mathbb{C}$ \begin{align*} |\varphi(xy)-\varphi(x)\varphi(y)| \leq & \left[ \varphi(|x^{*}-\alpha 1_{A}|^{2})\right] ^{\frac{1}{2}}\left[\varphi(|y-\beta1_{A}|^{2})\right] ^{\frac{1}{2}} \\ & - |\varphi(x^{*}-\alpha 1_{A})| |\varphi(y-\beta1_{A})|. \end{align*} Furthermore, we prove that if $z\in A$ with $|z| =1$ and $\lambda, \mu \in \mathbb{C}$ are such that $Re(\varphi((x^{*}-\bar{\beta}z^{*})(\alpha z-x)))\geq 0$ and $Re(\varphi((y^{*}-\bar{\mu}z^{*})(\lambda z-y)))\geq 0$, then \begin{center} $|\varphi(x^{*}y)-\varphi(x^{*}z)\varphi(z^{*}y)| \leq \frac{1}{4}| \beta-\alpha | | \mu-\alpha | -$ \\ $ \left[ Re(\varphi((x^{*}-\bar{\beta}z^{*})(\alpha z-x)))\right] ^{\frac{1}{2}}\left[ Re(\varphi((y^{*}-\bar{\mu}z^{*})(\lambda z-y)))\right] ^{\frac{1}{2}}.$ \end{center} The presented bounds for the Gr\"{u}ss type inequalities on $C^{*}$-algebras improve the other ones in the literature under mild conditions. As an application, using our results, we give some inequalities in $L^{\infty}(\left[a,b\right])$, which refine the other ones in the literature.
Golfarshchi, F. , Khalilzadeh, A. A. , & Moradlou, F. (2023). Improvement of the Gr\"{u}ss type inequalities for positive linear maps on $C^{*}$-algebras. Caspian Journal of Mathematical Sciences, 12(1), 81-93. doi: 10.22080/cjms.2022.23689.1629
MLA
Fatemeh Golfarshchi; Ali Asghar Khalilzadeh; Feridoon Moradlou. "Improvement of the Gr\"{u}ss type inequalities for positive linear maps on $C^{*}$-algebras", Caspian Journal of Mathematical Sciences, 12, 1, 2023, 81-93. doi: 10.22080/cjms.2022.23689.1629
HARVARD
Golfarshchi, F., Khalilzadeh, A. A., Moradlou, F. (2023). 'Improvement of the Gr\"{u}ss type inequalities for positive linear maps on $C^{*}$-algebras', Caspian Journal of Mathematical Sciences, 12(1), pp. 81-93. doi: 10.22080/cjms.2022.23689.1629
CHICAGO
F. Golfarshchi , A. A. Khalilzadeh and F. Moradlou, "Improvement of the Gr\"{u}ss type inequalities for positive linear maps on $C^{*}$-algebras," Caspian Journal of Mathematical Sciences, 12 1 (2023): 81-93, doi: 10.22080/cjms.2022.23689.1629
VANCOUVER
Golfarshchi, F., Khalilzadeh, A. A., Moradlou, F. Improvement of the Gr\"{u}ss type inequalities for positive linear maps on $C^{*}$-algebras. Caspian Journal of Mathematical Sciences, 2023; 12(1): 81-93. doi: 10.22080/cjms.2022.23689.1629