Let R be a ring and M a right R-module. We call M, a \delta(M)-coretractable module if for every proper submodule N of M containing \delta(M), there is a nonzero homomorphism from M=N to M. We investigate some conditions which under two concepts \delta(M)-coretractable and coretractable coincide. For a ring R, we prove that R is right Kasch if and only if R_R is \delta(R-R)-coretractable.
Moniri Hamzekolaee, A. R., Talebi rostami, Y., & Arman, K. (2024). Coretractable modules relative to delta. Caspian Journal of Mathematical Sciences, 13(1), 62-69. doi: 10.22080/cjms.2020.19071.1529
MLA
Ali Reza Moniri Hamzekolaee; Yahya Talebi rostami; Kolsum Arman. "Coretractable modules relative to delta". Caspian Journal of Mathematical Sciences, 13, 1, 2024, 62-69. doi: 10.22080/cjms.2020.19071.1529
HARVARD
Moniri Hamzekolaee, A. R., Talebi rostami, Y., Arman, K. (2024). 'Coretractable modules relative to delta', Caspian Journal of Mathematical Sciences, 13(1), pp. 62-69. doi: 10.22080/cjms.2020.19071.1529
VANCOUVER
Moniri Hamzekolaee, A. R., Talebi rostami, Y., Arman, K. Coretractable modules relative to delta. Caspian Journal of Mathematical Sciences, 2024; 13(1): 62-69. doi: 10.22080/cjms.2020.19071.1529