Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran <http://cjms.journals.umz.ac.ir> <https://doi.org/10.22080/CJMS.2020.19071.1529> Caspian J Math Sci. **13**(1)(2024), 62-69 (RESEARCH ARTICLE)

Coretractable modules relative to *δ*

Ali Reza Moniri Hamzekolaee^{[1](#page-0-0)}, Yahya Talebi and Kolsum Arman²

¹ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

² Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract. Let *R* be a ring and *M* a right *R*-module. We call *M*, a *δ*(*M*)-coretractable module if for every proper submodule *N* of *M* containing $\delta(M)$, there is a nonzero homomorphism from M/N to *M*. We investigate some conditions which under two concepts $\delta(M)$ -coretractable and coretractable coincide. For a ring *R*, we prove that *R* is right Kasch if and only if R_R is $\delta(R_R)$ -coretractable.

Keywords: coretractable modules, $\delta(M)$ -coretractable module.

2000 Mathematics subject classification: 16D10, 16D40; Secondary 16D80.

1. INTRODUCTION

Throughout this paper *R* will denote an arbitrary associative ring with identity and all modules will be unitary right *R*-modules. Let *M* be an *R*-module and *N* a submodule of *M*. We use $End_R(M)$, $ann_r(M)$, $ann_l(M)$ to denote the ring of endomorphisms of *M*, the right annihilator in *R* of *M* and the left annihilator in *R* of *M*, respectively. Let

Received: 16 June 2020 Revised: 16 June 2020

How to Cite: Moniri Hamzekolaee, Ali Reza; Talebi rostami, Yahya; Arman, Kolsum. Coretractable modules relative to delta, Casp.J. Math. Sci.,**13**(1)(2024), 62-69. This work is licensed under a Creative Commons Attribution 4.0 International License.

62

¹Corresponding author: a.monirih@umz.ac.ir

Accepted: 04 July 2020

Copyright © 2023 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

M be a module and *K* a submodule of *M*. Then *K* is essential in *M* denoted by $K \leq_e M$, if $L \cap K \neq 0$ for every nonzero submodule *L* of *M*. Dually, *K* is small in *M* ($K \ll M$), in case $M = K + L$ implies that $L = M$. We also recall that a module *M* is a small module in case there is a module *L* containing *M* such that $M \ll L$. It is well-known that a module *M* is small if and only if *M* is a small submodule of its injective hull.

Let *M* be a module and *N* a submodule of *M*. Following [[13\]](#page-7-0), *N* is *δ*-small in *M* (denoted by *N ≪^δ M*), in case *M* = *N* + *K* with *M/K* singular implies that $M = K$. Note that by definitions, every small submodule of *M* is δ -small in *M*. The sum of all δ -small submodules of *M* is denoted by $\delta(M)$. Also $\delta(M)$ is the reject of the class of all simple singular modules in *M*.

A submodule N of a module M is called a δ -supplement in M, if there is a submodule *K* of *M* such that $M = N + K$ and $N \cap K \ll_{\delta} N$. A module *M* is called *δ-supplemented* if every submodule of *M* has a *δ*supplement in *M*. A module *M* is called *amply δ-supplemented*, in case $M = A + B$ implies A contains a δ -supplement A' of B in M. The reader can find more details about classes of all versions of *δ*-supplemented modules in [[4](#page-6-0)].

Let *R* be a ring, *M* an right *R*-module. Recall that a module *M* is singular provided that $Z(M) = M$ where $Z(M) = \{x \in M \mid xI =$ $0, I \leq_e R_R$. Suppose that *S* denotes the class of all small right *R*-modules. In [\[9\]](#page-7-1) the authors defined $\overline{Z}(M)$ as the reject of *S* in *M*, i.e. $\overline{Z}(M) = \bigcap \{Kerf \mid f : M \to U, U \in \mathcal{S}\}\$. In this way, M is called *(non-)cosingular*, in case $(\overline{Z}(M) = M)$ $\overline{Z}(M) = 0$. They investigated some general properties of $\overline{Z}(M)$.

Following [\[2\]](#page-6-1), a module *M* is said to be retractable in case for every nonzero submodule *N* of *M*, there is a nonzero homomorphism $f: M \to N$, i.e $Hom_R(M, N) \neq 0$. Retractable modules and their various generalizations were widely studied and investigated (for example, see [\[3,](#page-6-2) [11,](#page-7-2) [12](#page-7-3)]). Amini, Ershad and Sharif in [[1](#page-6-3)] defined dual notation of retractable modules namely coretractable modules. A module *M* is *coretractable* provided that, $Hom_R(M/N, M) \neq 0$ for every proper submodule *N* of *M*. Some general properties of coretractable modules were investigated in [[1](#page-6-3)]. The class of Kasch rings is also characterized by means of coretractable modules. In [\[6\]](#page-6-4), the author introduced coretractable modules relative to their \overline{Z} . According to [[6](#page-6-4)], a module *M* is called $\overline{Z}(M)$ -coretractable in case for every proper submodule *K* of *M* containing $\overline{Z}(M)$, there exists a nonzero homomorphism from M/K to M. Some conditions which under coretractable modules and \overline{Z} coretractable modules coincide, were also presented. For a commutative semiperfect ring *R*, the author proved that *R* is Kasch if and only if every simple cosingular *R*-module can be embedded in *R* ([\[6,](#page-6-4) Corollary 2.14]). Inspired by last work, the same author and Talebi tried to generalize *Z*-coretractable modules to a general submodule. It means that, in [\[7\]](#page-6-5) a module *M* is called *N*-coretractable in case for every proper submodule *K* of *M* containing *N* there is a nonzero homomorphism $g: M/K \to M$. They proved that a right *GV* -ring *R* is a Kasch ring if and only if *R* is a semisimple ring. They also presented some statements that guaranteed that a module *M* is *N*-coretractable if and only if *M* is coretractable.

Inspired by mentioned works, we focus just on nonzero homomorphisms from M/K to M where K contains $\delta(M)$. We present some conditions to prove that when two concepts coretractable and $\delta(M)$ coretractable coincide. Among them, we show that if $\delta(M)$ is δ -small in *M* or it is a coretractable module, then *M* is coretractable if and only if *M* is $\delta(M)$ -coretractable. We show that R_R is $\delta(R_R)$ -coretractable if and only if every simple right *R*-module that annihilated by $\delta(R_R)$, can be embedded in *RR*.

2. $\delta(M)$ -CORETRACTABLE MODULES

In this section we introduce a new generalization of coretractable modules namely, $\delta(M)$ -coretractable modules.

Recall that a module *M* is *coretractable*, in case for every proper submodule *N* of *M*, there exists a nonzero homomorphism $f : M/N \rightarrow$ *M*.

Definition 2.1. Let *M* be a module. We say *M* is $\delta(M)$ -coretractable in case for every proper submodule *N* of *M* containing $\delta(M)$, there is a non-zero homomorphism from *M/N* to *M*.

Note that if for a module M we have $\delta(M) = 0$, then M is $\delta(M)$ coretractable if and only if *M* is coretractable.

Example 2.2. (1) Every coretractable module *M* is $\delta(M)$ -coretractable. In particular every semisimple module *M* is $\delta(M)$ -coretractable.

(2) Let *M* be a module with $\delta(M) = M$. Then clearly *M* is $\delta(M)$ coretractable. In other words, there is a module *M* with $\delta(M) = M$ such that *M* is not coretractable. Since $Hom_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q}) = 0$, then as an $\mathbb{Z}\text{-module } \mathbb{Q}$ is not coretractable. Note that $\delta(\mathbb{Q}) = \mathbb{Q}$.

Recall from [[8](#page-6-6)] that a ring *R* is right *GV* (*generalized V -ring*), in case every simple singular right *R*-module is injective. In [\[10](#page-7-4), Theorem 3.1] the authors proved that a ring *R* right *GV* if and only if every simple cosingular right *R*-module is projective.

Proposition 2.3. *Let R be a right GV -ring. If M is an indecomposable module with* $0 \neq \frac{M}{\delta(N)}$ $\frac{M}{\delta(M)}$ having a maximal submodule, then M is $\delta(M)$ *coretractable if and only if M is simple projective.*

Proof. Let *M* be coretractable relative to its δ . By assumption there is a maximal submodule *K* of *M* containing $\delta(M)$. By assumption, there is a monomorphism $g : M/K \to M$. It follows that Img is a simple submodule of *M*. Then *Img* is either cosingular or injective. If *Img* is cosingular, then by [\[10,](#page-7-4) Theorem 3.1] *Img* is projective. It follows that K is a direct summand of M and hence $K = 0$ or $K = M$. So that $K = 0$. If *Img* is injective, then *Img* is a summand of *M* and since $g \neq 0$ we conclude that $Im g = M$, a contradiction. The converse is obvious. \Box

We shall present some conditions that ensure us the two concepts $\delta(M)$ -coretractable and coretractable, coincide.

Lemma 2.4. *Let M be a module. In each of the following cases M is δ*(*M*)*-coretractable if and only if M is coretractable.*

 (1) $\delta(M) \ll_{\delta} M$ $(\delta(M) \ll M)$.

(2) *δ*(*M*) *is a coretractable module.*

Proof. (1) We shall prove the δ case. The other follows immediately. Let *M* be $\delta(M)$ -coretractable and *K* a proper submodule of *M*. Suppose that $M \neq \delta(M) + K$. Since *M* is $\delta(M)$ -coretractable, there is a homomorphism $f : M/(\delta(M) + K) \to M$. So that $f \circ \pi : M/K \to M$ is the required homomorphism where π : $M/K \to M/(\delta(M) + K)$ is natural epimorphism. Otherwise, $M = \delta(M) + K$. It follows from [\[13](#page-7-0), Lemma 1.2, there is a decomposition $M = Y \oplus K$ where *Y* is a semisimple projective submodule of $\delta(M)$. Therefore, there is a monomorphism from M/K to M since K is a direct summand of M. Therefore, M is coretractable. The converse is clear.

(2) Let *K* be a proper submodule of *M*. Then $K + \delta(M) \neq M$ or $K + \delta(M) = M$. If first one happens, then similar to (1), we can construct a nonzero homomorphism. Now suppose that $K + \delta(M) =$ *M*. Then $h: M/K \to \delta(M)/(\delta(M) \cap K)$ is an isomorphism induced from $M = \delta(M) + K$. Since $\delta(M)$ is coretractable, there is a nonzero homomorphism $q : \delta(M)/(\delta(M) \cap K) \to \delta(M)$. Therefore, $q \circ h \circ j$: $M/K \to M$ is a nonzero homomorphism where $j: N \to M$ is the inclusion. \Box

Proposition 2.5. *Let* M *be a module such that* $M/\delta(M)$ *is coretractable and can be embedded in M (for example,* $M/\delta(M)$ *is semisimple and* $\delta(M)$ *is a direct summand of M). Then M is* $\delta(M)$ *-coretractable.*

Proof. Let K be a proper submodule of M containing $\delta(M)$. Then $K/\delta(M)$ is a proper submodule of $M/\delta(M)$. Since $M/\delta(M)$ is coretractable, there is a nonzero homomorphism $g : M/K \to M/\delta(M)$. Because, $M/\delta(M)$ can be embedded in M, we conclude that there will be a nonzero homomorphism from M/K to M .

Let *M* be a module and $K \leq M$. We say *M* is $\delta(K)$ -coretractable if for every proper submodule *T* of *M* containing $\delta(K)$, there is a non-zero homomorphism $g: M/T \to M$.

Lemma 2.6. (1) Let $M = \bigoplus_{i=1}^{n} M_i$ be a $\delta(M_i)$ -coretractable module *for at least one* $i \in \{1, \ldots, n\}$ *. Then M is* $\delta(M)$ *-coretractable.*

(2) Let *M* be $\delta(M)$ -coretractable. If $\delta(M)$ contains no nonzero image *of any endomorphism of* M *, then* $M/\delta(M)$ *is coretractable.*

(3) *If* $\frac{M}{\delta(M)}$ has a maximal submodule, then $Soc(M) \neq 0$. In particular, *if M is a finitely generated* $\delta(M)$ -coretractable, then $Soc(M) \neq 0$.

Proof. (1) This is straightforward.

(2) Let $T/\delta(M)$ be a proper submodule of $M/\delta(M)$. Then $\delta(M) \subset$ $T \subset M$. Since *M* is $\delta(M)$ -coretractable, there exists a nonzero homomorphism $g: M/T \to M$. Now define $h: \frac{M/\delta(M)}{T/\delta(M)} \to M/\delta(M)$ by $h(x + \delta() + \frac{T}{\delta(M)}) = g(x + T)$ for every $x \in M$. If $Imh = \delta(M)$, then *Img* $\subseteq \delta(M)$, a contradiction. So that, $M/\delta(M)$ is coretractable.

(3) Let $\frac{K}{\delta(M)}$ be a maximal submodule of $\frac{M}{\delta(M)}$. Then *K* is a maximal submodule of *M* also containing $\delta(M)$. So there is a $h: \frac{M}{K} \to M$. It follows that *Imh* is a simple submodule of *M*.

□

Let *M* be a module and $N \leq M$. Then *N* is called *fully invariant, if for every* $f \in End_R(M)$, $f(N) \subseteq N$ *. Some submodules of a module M are fully invariant such as* $Rad(M), Soc(M), \delta(M)$ *.*

Proposition 2.7. (1) Let M be a module and $K, L \leq M$ such that K *is a fully invariant singular* δ -supplement of L *in* M . If M *is* $\delta(L)$ *coretractable, then K is coretractable.*

(2) Let *M* be a module such that $\delta(M)$ has a fully invariant singular δ *supplement* K *in* M *. If* M *is* $\delta(M)$ *-coretractable, then* K *is coretractable.*

(3) If $\delta(M)$ *is a direct summand of a coretractable module M, with* $M/\delta(M)$ *singular, then* $\delta(M)$ *is coretractable.*

Proof. (1) Let *N* be a proper submodule of *K*. Consider the submodule $N + \delta(L)$ of *M*. If $N + \delta(L) = M$, then by modularity $N + (K \cap \delta(L)) = K$ which implies that $N = K$, a contradiction (note that $K \cap \delta(L) \subseteq K \cap \delta(L)$ $L \ll_{\delta} K$). It follows that $N + \delta(L)$ is a proper submodule of *M*. Being $M, \delta(L)$ -coretractable, implies that there is non-zero homomorphism

 $g: M/(N + \delta(L)) \to M$. Now $(g \circ \pi)(K) \subseteq K$ as *K* is fully invariant where $\pi : M \to M/(N + (\delta(L))$ is the natural epimorphism. Define the homomorphism $h: K/N \to K$ by $h(x+N) = g(x+N+\delta(L))$. Since *g* is nonzero, there is a $x \in M \setminus (N + \delta(L))$ such that $g(x + N + \delta(L)) =$ $h(x+N) \neq 0$. Hence *K* is coretractable.

 (2) Similar to (1) .

(3) Follows from (2). \Box

Proposition 2.8. *Let* $M = M_1 \oplus \ldots \oplus M_n$ *. If each* M_i *is* $\delta(M_i)$ *coretractable, then* M *is* $\delta(M)$ *-coretractable.*

Proof. The proof is exactly similar to proof of [[1](#page-6-3), Proposition 2.6]. Note that by [\[13](#page-7-0), Lemma 1.5(3)], $\delta(M_1 \oplus \ldots \oplus M_n) = \delta(M_1) \oplus \ldots \oplus \delta(M_n)$. □

Let M be an R-module. A submodule K is said to be dense in M if, for any $y \in M$ *and* $0 \neq x \in M$ *, there exists* $r \in R$ *such that* $xr \neq 0$ *and* $yr \in K$. Obviously, any dense submodule of M is essential. From [[5](#page-6-7), Proposition 8.6, K is dense in M if and only if $Hom_R(P/K, M) = 0$ *for every submodule* $P \supset K$ *.*

Theorem 2.9. *Let R be a ring. Then the following are equivalent:*

(1) R_R *is* $\delta(R_R)$ -coretractable;

(2) *Every finitely generated free right* R *-module* F *is* $\delta(F)$ *-coretractable;*

(3) For every right ideal $I \supseteq \delta(R_R)$, $ann_l(I) \neq 0$;

(4) *Every simple right* R *-module annihilated by* $\delta(R_R)$ *can be embedded in RR.*

Proof. (1) \Leftrightarrow (2) Follows from Proposition [2.8.](#page-5-0)

 $(1) \Rightarrow (3)$ Let *I* be a right ideal containing $\delta(R_R)$. Since R_R is $\delta(R_R)$ coretractable, there is a nonzero homomorphism $f: R/I \to R$. Consider the endomorphism $g = f \circ \pi : R \to R$ where π is the natural epimorphism from *R* to *R*/*I*. Then there is an element $a \in R$ such that $g(x) = ax$. Let $y \in I$. Then $g(y) = ay = 0$ as $I \subseteq Kerg$.

(3) \Rightarrow (1) Let *I* be a right ideal of *R* containing $\delta(R_R)$. Since $ann_l(I) \neq 0$, there exists an element of *R* such as *a* that $aI = 0$ and $a \neq 0$. Define $f: R/I \to R$ by $f(x+I) = ax$. It is easy to check that *f* is an *R*-homomorphism and in particular $f \neq 0$.

(1) \Rightarrow (4) Let *M* \cong *R/K* be a simple right *R*-module such that $M\delta(R_R) = 0$. It follows that $\delta(R_R) \subseteq K$. Since *R* is $\delta(R_R)$ -coretractable, there is a nonzero homomorphism $f: R/K \to R$.

 $(4) \Rightarrow (1)$ Let *T* be a proper right ideal of *R* containing $\delta(R_R)$. Now there exists a right maximal ideal *K* of *R* such that $\delta(R_R) \subseteq T \subseteq K$. Consider the simple right *R*-module $M = R/K$. Since $M\delta(R_R) = 0$, there is a nonzero homomorphism $g: R/K \to R$ by assumption. Being *T* a submodule of *K*, there exists $f: R/T \to R/K$ defined by $f(x+T) =$ $x + K$. Hence *gof* is the desired homomorphism. **Corollary 2.10.** *The following statements are equivalent for a ring R;* (1) *R is a right Kasch ring;*

- (2) *Every finitely generated free right* R *-module* F *is* $\delta(F)$ *-coretractable;*
- (3) For every right ideal $I \supseteq \delta(R_R)$, $ann_l(I) \neq 0$;

(4) *Every simple right R-module annihilated by* $\delta(R_R)$ *can be embedded in RR.*

Proof. The proof follows from Theorem [2.9](#page-5-1) and Lemma [2.4](#page-3-0) and the fact that R is a right Kasch ring if and only if R_R is a coretractable module. \Box

Corollary 2.11. *Let R be a right GV -ring. Then the following are equivalent:*

- (1) R_R *is* $\delta(R_R)$ -coretractable;
- (2) *R is a right Kasch ring;*
- (3) *R is a semisimple ring.*

Proof. Follows from [\[7,](#page-6-5) Proposition 2.26] and Theorem [2.9.](#page-5-1) \Box

Proposition 2.12. *Let R be a ring such that every free right R-module* $R^{(A)}$ is $\delta(R)^{(A)}$ -coretractable. Then for every right *R*-module *M* with $\delta(R_R) \subseteq ann_r(M), Hom_R(M, R) \neq 0.$

Proof. Let *M* be a right *R*-module such that $\delta(R_R) \subseteq ann_r(M)$. Then there is a free right *R*-module F and a submodule K of F such that $M \cong F/K$. Since $M\delta(R_R) = 0$, we have $\delta(R_R)^{(A)} \subseteq K$ where *A* is an indexed set. By assumption, there is a nonzero homomorphism λ : $F/K \to F$. Then the homomorphism $\pi \circ \lambda : M \to R$ is the required one where $\pi : F \to R$ is the natural epimorphism. \Box

REFERENCES

- [1] B. Amini, M. Ershad and H. Sharif, Coretractable modules, *J. Aust. Math. Soc.* **86** *(2009), 289–304.*
- [2] S. M. Khuri, Endomorphism rings and lattice isomorphisms, *J. Algebra* **59** *(1979), 401–408.*
- [3] S. M. Khuri, Nonsingular retractable modules and their endomorphism rings, *Bull. Aust. Math. Soc.* **43** *(1991), 63–71.*
- [4] M. T. Koşan, *δ*-lifting and *δ*-supplemented modules, *Algebra Colloq.* **14***(1) (2007), 53–60.*
- [5] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlog, New York, 1999.
- [6] A. R. Moniri Hamzekolaee, A generalization of coretractable modules, *J. Algeb. Syst.* **5***(2) (2017), 163–176.*
- [7] A. R. Moniri Hamzekolaee and Y. Talebi, Coretractable modules relative to a submodule, *J. Algebra Comb. Discrete Appl.* **6***(2), 95–103.*
- [8] V. S. Ramamurthy and K. M. Rangaswamy, Generalized *V* -rings, *Math. Scand.* **31** *(1972), 69–77.*

- [9] Y. Talebi and N. Vanaja, The torsion theory cogenerated by *M*-small modules, *Comm. Algebra* **30***(3) (2002), 1449-1460.*
- [10] Y. Talebi, A. R. Moniri Hamzekolaee, M. Hosseinpour, A. Harmanci and B. Ungor, Rings for which every cosingular module is projective, *Hacett. J. Math. Stat.* **48***(4) (2019), 973–984.*
- [11] J. M. Zelmanowitz, Correspondences of closed submodules, *Proc. Amer. Math. Soc.* **124** *(1996), 2955–2960.*
- [12] Z. P. Zhou, A lattice isomorphism theorem for nonsingular retractable modules, *Canadian Math. Bull.* **37** *(1999), 140–144.*
- [13] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, *Algebra Colloq.* **7** *(2000), 305–318.*