Let $\xi=(G\times_{K} \mathcal{G} / \mathcal{K}, \rho_{\xi}, G/K,\mathcal{G} / \mathcal{K})$ be the associated bundle and $\tau_{G/K}=(T_{G/K},\pi_{G/K},G/K, \textrm{R}^{m})$ be the tangent bundle of special examples of odd dimension solvable Lie groups equipped with left invariant Riemannian metric. In this paper we prove some conditions about the existence of homogeneous geodesic on the base space of $\tau_{G/K}$ and homogeneous (geodesic) vectors on the fiber space of $\xi$.
Tondro Vishkaei, H., Chavosh Khatamy, R., & Toomanian, M. (2018). Orthogonality of Homogeneous geodesics on the tangent bundle. Caspian Journal of Mathematical Sciences, 7(2), 136-143. doi: 10.22080/cjms.2018.2028
MLA
H. Tondro Vishkaei; Reza Chavosh Khatamy; M. Toomanian. "Orthogonality of Homogeneous geodesics on the tangent bundle". Caspian Journal of Mathematical Sciences, 7, 2, 2018, 136-143. doi: 10.22080/cjms.2018.2028
HARVARD
Tondro Vishkaei, H., Chavosh Khatamy, R., Toomanian, M. (2018). 'Orthogonality of Homogeneous geodesics on the tangent bundle', Caspian Journal of Mathematical Sciences, 7(2), pp. 136-143. doi: 10.22080/cjms.2018.2028
VANCOUVER
Tondro Vishkaei, H., Chavosh Khatamy, R., Toomanian, M. Orthogonality of Homogeneous geodesics on the tangent bundle. Caspian Journal of Mathematical Sciences, 2018; 7(2): 136-143. doi: 10.22080/cjms.2018.2028