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Orthogonality of Homogeneous geodesics on the tangent
bundle
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Abstract. Let ξ = (G ×K G/K, ρξ,G/K,G/K) be the associated
bundle and τG/K = (TG/K , πG/K , G/K,Rm) be the tangent bundle
of special examples of odd dimension solvable Lie groups equipped
with left invariant Riemannian metric. In this paper we prove some
conditions about the existence of homogeneous geodesic on the base
space of τG/K and homogeneous (geodesic) vectors on the fiber
space of ξ .
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1. Introduction and preliminaries

Let G be a connected Lie group and K be a closed subgroup of G.
The set of left cosets of K in G is denoted by G/K and can be given a
unique differentiable structure ([7], vol.II, chap.2), and hence M = G/K
is called a homogeneous manifold. When a Lie group G acts transitively
isometric on a Riemannian manifold M , we can identify M with the set
G/K of left cosets of the isotropy group K of a point x0 ∈ M . The point
x0 is called the origin of M . Let ▽ be an affine connection on M = G/K
and let ▽ be invariant under the natural action of T : G ×M −→ M .
Then a geodesic γ : I −→ M is called a homogeneous geodesic if, there
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exists a 1-parameter subgroup t −→ exp tX , t ∈ R, of G with X ∈ G=
TeG such that

γ(t) = T (exp tX, x0).

Where γ(0) = x0 ∈ M , and exp : G → G is the exponential map [8]. A
vector 0 ̸= X ∈ G is called a homogeneous vector (or geodesic vector),
if the curve γ(t) = (exp tX)(x0) is a geodesic on M = G/K [8]. The
following result can be found in [8], proposition 1. Any homogeneous
Riemannian manifold G/K has the reductive decomposition of the form

G = M+K

where M ⊂ G is a vector subspace, such that Ad(K)(M) ⊂ M. Let
M = G/K be a Riemannian manifold and G = M + K, its reductive
decomposition. Then the natural map ϕ : G −→ G/K = M induces a
linear epimorphism (dϕ)e : TeG −→ Tx0M , and the vector space M can
be identified with Tx0M .

Proposition 1.1.[10] A finite family {γ1, γ2, . . . , γn} of homogeneous
geodesics through xo ∈ M is orthogonal ( respectively, linearly indepen-
dent) if the M-component of the corresponding homogeneous vectors are
orthogonal (respectively, linearly independent).
Let ℑ = (G, π,G/K,K) be a principal homogeneous fiber bundle with
group structure K, and let G be a connected Lie group and K a closed
subgroup of G, (see [1], definition 2.2). We take the Lie algebras G
and K of G and K respectively, in [1] and [2], we proved some relations
between the homogeneous vector in the fiber space of the associated bun-
dle, ξ = (G ×K G/K, ρξ,G/K,G/K) and the homogeneous geodesic in
the base space of a principal homogeneous bundle ℑ = (G, π,G/K,K).In
[3], we consider the homogeneous bundle ℑ = (G, π,G/K,K) and the
tangent bundle τG/K of M = G/K, and give some results about the
existence of homogeneous vectors on the fiber space of τG/K , for both
cases of G semisimple and weakly semisimple Lie group. Homogeneous
geodesics on homogeneous Finsler manifolds have been studied by many
authors. For results on homogeneous geodesics in homogeneous Finsler
manifolds and some properties on symmetric Finsler spaces we refer for
example to [6, 11, 12] Now, we investigate the existence of mutually or-
thogonal linearly independent homogeneous geodesics in the base space
of the tangent bundle τG of homogeneous Riemannian manifold G given
in theorem 2.1.

2. Main result

Let ℑ = (G, π,G/K,K) be a principal homogeneous bundle, with the
associated bundle ξ = (G ×K K, ρξ,G/K,G/K). Let G be the matrix
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group of all matrices of the form
ez0 0 . . . 0 x0
0 ez1 . . . 0 x1
. . . . . . . . . . . . . . .
0 0 . . . ezn xn
0 0 . . . 0 1


where, (x0, x1, · · · , xn, z1 · · · , zn) ∈ R2n+1. The Lie group G is unimod-
ular and solvable (see [9], pp.134-136), with the left invariant Riemann-
ian metric

g =
n∑

i=0

e−2zidx2i + λ2
n∑

k,j=0

dzkdzj .

Where λ ̸= 0 is a constant. Then G is a homogeneous Riemannian
manifold with the origin at (0, 0, · · · , 0) ([9], p.134). Let G = M+K be
the reductive decomposition of G , then K= 0, and hence G = M. In [3],
we prove that ξ = (G ×K G/K, ρξ,G/K,G/K), is the associated bundle
of ℑ = (G, π,G/K,K). Then we can take ξ = (G × M, ρξ,G,M), be
the associated bundle of ℑ = (G, π,G/K,K),(see[5]).
In [4], we letG be a 3-dimensional solvable Lie group, given in [9], pp.134,
and prove some results about the existence of homogeneous vectors on
the fiber space of τG/K and ξ.
In [5], we extend theorems 5.6 and 5.7 in [4], and give the following
theorem, for the odd dimensional solvable Lie group.
Theorem 2.1.[5]. Let ℑ = (G, π,G/K,K), be a principal homogeneous
bundle and ξ = (G ×K G/K, ρξ,G/K,G/K), be the associated bundle
of ℑ = (G, π,G/K,K). If G is the matrix group of all matrices of the
form 

ez0 0 . . . 0 x0
0 ez1 . . . 0 x1
. . . . . . . . . . . . . . .
0 0 . . . ezn xn
0 0 . . . 0 1


where (x0, x1, · · · , xn, z1 · · · , zn) ∈ R2n+1 and z0 = −(z1+z2+· · ·+zn).
Then a vector V in the fiber space of ξ is a homogenous (geodesic ) if
and only if its components

(x0, x1, · · · , xn, z1, · · · , zn)

satisfy the following conditions

x0(z1 + z2 + · · ·+ zn) = 0 x1z1 = 0, · · · , xnz1 = 0

x20 − x21 = 0, · · · , x20 − x2n = 0.
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In the proof of the Theorem 5.3 in [3], we give a strong isomorphism
between the tangent bundle

τG/K = (TG/K , πG/K , G/K,Rm)

and the associated bundle

ξ = (G×K G/K, ρξ,G/K,G/K),

then under hypothesis of theorem 2.2 there is a strong isomorphism
between,the associated bundle

ξ = (G×M, ρξ,G,M)

and the tangent bundle

τG = (TG, πG, G,R2n+1)

so we have,
Corollary 2.2.[5] With hypothesis of theorem 2.2, let

τG = (TG, πG, G,R2n+1)

be the tangent bundle of the homogeneous Riemannian manifold G. Then
a vector W in R2n+1 is a homogeneous vector (under isomorphism), if
and only if its component (x0, x1, · · · , xn, z1 · · · , zn) satisfy the following
conditions

x0(z1 + z2 + · · ·+ zn) = 0 x1z1 = 0, · · · , xnz1 = 0

x20 − x21 = 0, · · · , x20 − x2n = 0.

In [3], theorem 5.4. we give a subspace of G′ such that all member of this
subspace are homogeneous vectors, and by strong isomorphism between
τG/K and ξ we can find a subspace of Rm (under isomorphism) such that
all members of this subspace are homogeneous vectors, In the following
theorem, we consider the tangent bundle

τG = (TG, πG, G,R2n+1)

of the homogeneous Riemannian manifold G in theorem 2.2, and give
structure of all subspaces of R2n+1 such that all their members are
homogeneous vectors.
Theorem 2.3.([5]). Let

τG = (TG, πG, G,R2n+1)

be the tangent bundle of the homogeneous Riemannian manifold G, (given
in theorem 2.1). Then all homogeneous vectors are decomposed into an
n-dimension vector subspace W in R2n+1 and 2n, one-dimension vector
subspace in R2n+1 generated by all vectors of the form X0±X1±· · ·±Xn.
By proposition 1.3 and Theorem 2.3 we have, the following result about
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linearly independence of homogeneous geodesics on the base space of τG
Corollary 2.4.[5] With hypothesis of theorem 2.2, the tangent bundle

τG = (TG, πG, G,R2n+1)

admits 2n + 1 linearly independent homogeneous geodesics through the
origin {e} of the base space of τG.
Now, we investigate orthogonality of homogeneous vectors on the fiber
space of tangent bundle,

τG = (TG, πG, G,R2n+1).

In [3] we prove some conditions about existence and orthogonality of ho-
mogeneous vectors for both cases of G semisimple and weakly semisim-
ple. For example in theorem 5.3 in [3], we prove that if G is a semisimple
Lie group then there are m orthogonal homogeneous vectors on the fiber
space of the tangent bundle,

τG/K = (TG/K , πG/K , G/K,Rm)

In the follow, we want to get some conditions about linearly indepen-
dent and orthogonality of homogeneous vectors on the fiber space and
homogeneous geodesics on the base space of the tangent bundle of the
homogeneous Riemannian manifold G (given in theorem 2.1). For this
we need to considering to relations between orthogonality of homoge-
neous vectors and the Hadamard matrices.
Definition 2.5. A Hadamard matrix of order k is k × k square matrix
whose entries are all equal to ±1, and such that A.At = kIk, where Ik
is the unit matrix.
The condition A.At = kIk, in definition 2.5, implies that the k rows or
columns of a Hadamard matrix represent orthogonal k-tuples, with all
entries equal to +1 or -1, we can use this fact for considering to struc-
ture of Hadamard matrices and orthogonality of homogeneous (geodesic)
vectors.
Lemma 2.6. Let τG = (TG, πG, G,R2n+1) be the tangent bundle of the
homogeneous Riemannian Lie group G of all matrices of the form

ez0 0 . . . 0 x0
0 ez1 . . . 0 x1
. . . . . . . . . . . . . . .
0 0 . . . ezn xn
0 0 . . . 0 1


where (x0, x1, · · · , xn, z1 · · · , zn) ∈ R2n+1 and z0 = −(z1+z2+ · · ·+zn)
,
then;
(i) If (n + 1) is odd, then there are not any two mutually orthogonal
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(n+ 1)-tuples with all entries equal to ±1.
(ii)If (n + 1) is even and not divisible by 4, then there are exactly two
mutually orthogonal (n+ 1)-tuples with all entries equal to ±1.
Proof. Let τG = (TG, πG, G,R2n+1) be the tangent bundle of the homo-
geneous Riemannian manifold G (given in theorem 2.2). By Corollary
2.3, and theorem 2.4 a vector w in R2n+1 is a homogeneous (geodesics)
vector (under isomorphism), if and only if

A) w ∈ W = span(Z1, Z2, · · · , Zn)

B) w =

i=n∑
i=0

xiXi and x20 − x21 = 0, · · · , x20 − x2n = 0.

As concerns homogeneous (geodesics) vectors of type (B), they are all
generated by the vectors of the form X0 + ϵ1X1 + · · · + ϵnXn, where
ϵi ∈ {1,−1}. Therefore, the problem of finding mutually orthogonal
geodesics vectors of type (B) is equivalent to the algebraic problem of
finding (n+ 1)-tuples, with all entries equal to ±1, which are mutually
orthogonal with respect to the standard scaler product in Rn+1.
Let (n+ 1) be odd number and W1 and W2 be two (n+ 1)-tuples with
all entries equal to ±1. The scaler product of W1 and W2 is the sum
of the products of their entries and all such products are equal to ±1.
By hypotheses, (n+1) is odd, then sum of the products of their entries
dose not vanish, so W1 and W2 can not be orthogonal, so we obtain (i).
For the second statement of the lemma, we spouse that (n + 1) = 2m,
where m is odd, let V1 and V2 be two (n + 1)-tuples with all entries
equal to ±1, such that V1 = (1, 1, · · · , 1) and V2 = (−1, 1, · · · − 1, 1),
then V1 and V2 are orthogonal. Now, we spouse that V , W , Z, are three
mutually orthogonal (n + 1)-tuples with all entries equal to ±1. Then,
we compute the scaler product of V , W and Z by V . In this way, we
can obtain three mutually orthogonal (n+ 1)-tuples vectors V ′, W ′, Z ′

such that all entries equal to ±1. If we take V ′ = (−1,−1, · · · ,−1),
then by orthogonality of V ′ and W ′, W ′ has exactly m entries equal
to −1 and exactly m entries equal to 1. We then multiply, component
by component, and applying a fixed permutation of the all entries for
mutually orthogonal (n + 1)-tuples vectors V ′, W ′, Z ′, such that this
applications will preserve the orthogonality of V ′, W ′, Z ′. By this way,
we can obtain W ′ = (1, 1, · · · , 1,−1,−1, · · · ,−1), but m is odd and the
orthogonality of V ′, W ′, Z ′ is imposable, this gives a contradiction, and
the proof of the lemma is complete. �
Before starting some additional results, we recall the fact that A.At =
kIk, in definition 2.5 implies that the k rows or columns of a Hadamard
matrix represent orthogonal k-tuples, with all entries equal to +1 or
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-1, for the case n+ 1 be divisible by 4, the problem related to algebraic
problem of the existence of Hadamard matrices of order n+1. Therefore,
we get at once the following proposition.
Proposition 2.7.With hypothesis of lemma 2.7, let n+1 be divisible by
4, then R2n+1 admits n + 1 mutually orthogonal (n + 1)-tuples vectors
with all entries equal to ±1, if and only if, there exists a Hadamard
matrices of order n+ 1.
Now, we can prove the following theorem about the linearly independent
and the maximum number of the orthogonal homogeneous (geodesic)
vectors on the fiber space of

τG = (TG, πG, G,R2n+1).

Theorem 2.8. Let τG = (TG, πG, G,R2n+1) be the tangent bundle of
the homogeneous Riemannian Lie group G, (given in theorem 2.1 and
lemma 2.6) then;
(i)There are 2n+1 linearly independent homogeneous (geodesics) vectors
in the fiber space of through the τG.
(ii) The maximum number of the orthogonal homogeneous (geodesic) vec-
tors on the fiber space of τG is n+ 1, in the case that n+ 1 is odd.
(ii)The maximum number of the orthogonal homogeneous (geodesic) vec-
tors on the fiber space of τG, is n+2, in the case that n+1 is even and
not divisible by 4.
(iv)The maximum number of the orthogonal homogeneous (geodesic) vec-
tors on the fiber space of τG, is 2n + 1, in the case that n + 1 is even
and divisible by 4 and there exists a Hadamard matrices of order n+ 1.
Proof. Theorem 2.3 and corollary 2.2, conclude the fist part of theorem,
it is easy to see that, there exist n+1 linearly independent homogeneous
(geodesics) vectors of type (B), ( see proof of lemma 2.6), then there are
2n+1 linearly independent homogeneous (geodesics) vectors in the fiber
space of τG.
The second and the third part of the theorem follows from (i) and (ii),
in lemma 2.6. Finally, as an immediate consequence from proposition
2.7, we obtain (iv).�
By proposition 1.3 and theorem 2.8, we complete corollary 2.5 in [5],
about the number of linearly independent homogeneous geodesics through
origin of the base space of τG.
Corollary 2.9. Let τG = (TG, πG, G,R2n+1) be the tangent bundle of
the homogeneous Riemannian Lie group G, (given in theorem 2.1 and
lemma 2.6) then;
(i)There are 2n+ 1 linearly independent homogeneous geodesics vectors
through the origin {e} of the base space of τG.
(ii) The maximum number of the orthogonal homogeneous geodesic through
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the origin {e} of the base space of τG, is n+1, in the case that n+1 is odd.
(ii)The maximum number of the orthogonal homogeneous geodesic through
the origin {e} of the base space of τG, is n+ 2, in the case that n+ 1 is
even and not divisible by 4.
(iv)The maximum number of the orthogonal homogeneous geodesic through
the origin {e} of the base space of τG, is 2n + 1, in the case that n + 1
is even and divisible by 4 and there exists a Hadamard matrices of order
n+ 1.
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