Department of Mathematics and Statistics, University of Cape Coast,Ghana
Abstract
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
Yankson, E. (2013). Periodicity in a System of Differential Equations with Finite Delay. Caspian Journal of Mathematical Sciences, 2(2), 147-157.
MLA
E. Yankson. "Periodicity in a System of Differential Equations with Finite Delay", Caspian Journal of Mathematical Sciences, 2, 2, 2013, 147-157.
HARVARD
Yankson, E. (2013). 'Periodicity in a System of Differential Equations with Finite Delay', Caspian Journal of Mathematical Sciences, 2(2), pp. 147-157.
VANCOUVER
Yankson, E. Periodicity in a System of Differential Equations with Finite Delay. Caspian Journal of Mathematical Sciences, 2013; 2(2): 147-157.