2
Department of Mathematics, Faculty of Sciences Razi University, 67149 Kermanshah, Iran
Abstract
In this work, by employing the Leggett-Williams fixed point theorem, we study the existence of at least three positive solutions of boundary value problems for system of third-order ordinary differential equations with $(p_1,p_2,ldots,p_n)$-Laplacian begin{eqnarray*} left { begin{array}{ll} (phi_{p_i}(u_i''(t)))' + a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0 leq t leq 1, alpha_i u_i(0) - beta_i u_i'(0) = mu_{i1} u_i(xi_i),hspace{0.2cm} gamma_i u_i(1) + delta_i u_i'(1) = mu_{i2} u_i(eta_i), hspace{0.5cm} u_i''(0) = 0, end{array} right. end{eqnarray*} where $ phi_{p_i}(s) = |s|^{p_i-2}s,$, are $p_i$-Laplacian operators, $p_i > 1, 0 < xi_i < 1, 0 < eta_i < 1$ and $mu_{i1}, mu_{i2}> 0$ for $i = 1,2, ldots,n$.
Alimohammady, M., & Nyamoradi, N. (2013). Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian. Caspian Journal of Mathematical Sciences, 2(1), 11-21.
MLA
M. Alimohammady; N. Nyamoradi. "Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian", Caspian Journal of Mathematical Sciences, 2, 1, 2013, 11-21.
HARVARD
Alimohammady, M., Nyamoradi, N. (2013). 'Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian', Caspian Journal of Mathematical Sciences, 2(1), pp. 11-21.
VANCOUVER
Alimohammady, M., Nyamoradi, N. Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian. Caspian Journal of Mathematical Sciences, 2013; 2(1): 11-21.