Department of Mathematics Education, Farhangian University, P. O. Box 14665–889, Tehran, Iran
10.22080/cjms.2025.29860.1771
Abstract
The main goal of the paper is to compute the number of group actions and actions up to isomorphism of a finitely generated Abelian group $ G \cong \mathbb{Z}^k \oplus \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_t} $, on a set of \(m\) elements, and several illustrative examples are presented to clarify the main results.
Hosseini, A. (2025). Counting actions and non-isomorphic actions of a finitely generated abelian group on a finite set. Caspian Journal of Mathematical Sciences, 14(2), 424-432. doi: 10.22080/cjms.2025.29860.1771
MLA
Arezoo Hosseini. "Counting actions and non-isomorphic actions of a finitely generated abelian group on a finite set", Caspian Journal of Mathematical Sciences, 14, 2, 2025, 424-432. doi: 10.22080/cjms.2025.29860.1771
HARVARD
Hosseini, A. (2025). 'Counting actions and non-isomorphic actions of a finitely generated abelian group on a finite set', Caspian Journal of Mathematical Sciences, 14(2), pp. 424-432. doi: 10.22080/cjms.2025.29860.1771
CHICAGO
A. Hosseini, "Counting actions and non-isomorphic actions of a finitely generated abelian group on a finite set," Caspian Journal of Mathematical Sciences, 14 2 (2025): 424-432, doi: 10.22080/cjms.2025.29860.1771
VANCOUVER
Hosseini, A. Counting actions and non-isomorphic actions of a finitely generated abelian group on a finite set. Caspian Journal of Mathematical Sciences, 2025; 14(2): 424-432. doi: 10.22080/cjms.2025.29860.1771