2
Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran.
10.22080/cjms.2025.30161.1776
Abstract
Let $\mathcal{L}$ be a bounded distributive lattice. In this paper, we introduce and investigate the join coatom element graph of $\mathcal{L}$, denoted by $\mathbb{CG} (\mathcal{L})$. It is the (undirected) graph with all nontrivial elements of $\mathcal{L}$ as vertices, and for distinct nontrivial elements $a, b \in \mathcal{L}$, the vertices $a$ and $b$ are adjacent if and only if $a \vee b$ is a coatom element of $\mathcal{L}$. The basic properties and possible structures of the graph $\mathbb{CG}(\mathcal{L})$ are investigated. The connectedness, clique number, domination number and independence number of $\mathbb{CG}(\mathcal{L})$ and their relations to algebraic properties of $\mathcal{L}$ are explored.
Ebrahimi Atani, S. , & Khoramdel, M. (2025). Join coatom element graph of a lattice. Caspian Journal of Mathematical Sciences, 14(2), 344-356. doi: 10.22080/cjms.2025.30161.1776
MLA
Shahabaddin Ebrahimi Atani; Mehdi Khoramdel. "Join coatom element graph of a lattice", Caspian Journal of Mathematical Sciences, 14, 2, 2025, 344-356. doi: 10.22080/cjms.2025.30161.1776
HARVARD
Ebrahimi Atani, S., Khoramdel, M. (2025). 'Join coatom element graph of a lattice', Caspian Journal of Mathematical Sciences, 14(2), pp. 344-356. doi: 10.22080/cjms.2025.30161.1776
CHICAGO
S. Ebrahimi Atani and M. Khoramdel, "Join coatom element graph of a lattice," Caspian Journal of Mathematical Sciences, 14 2 (2025): 344-356, doi: 10.22080/cjms.2025.30161.1776
VANCOUVER
Ebrahimi Atani, S., Khoramdel, M. Join coatom element graph of a lattice. Caspian Journal of Mathematical Sciences, 2025; 14(2): 344-356. doi: 10.22080/cjms.2025.30161.1776