Suppose that $\varphi$ is an analytic self-map of the open unit disk $\mathbb{D}$ and $\psi$ is a bounded analytic function on $\mathbb{D}$. The weighted composition operator $C_{\psi,\varphi}$ is the operator on the weighted Bergman spaces $A_{\alpha}^{2}$ given by $C_{\psi,\varphi}f=\psi f\circ\varphi$ for any $f\in A_{\alpha}^{2}$. If $\varphi_1,\varphi_2,...,\varphi_n$ are linear fractional non-automorphisms and $\psi_{1},\psi_{2},...,\psi_{n} $ are bounded analytic functions, under some conditions, we obtain a subset of the numerical range of $C_{\psi_1,\varphi_1}+C_{\psi_2,\varphi_2}+...+C_{\psi_n,\varphi_n}$ on $A_{\alpha}^{2}$ and determine when zero lies in the interior of its numerical range.
Haji Shaabani, M. (2025). Numerical range of a sum of weighted composition operators on the weighted Bergman spaces. Caspian Journal of Mathematical Sciences, 14(1), 177-184. doi: 10.22080/cjms.2025.29040.1753
MLA
Mahmood Haji Shaabani. "Numerical range of a sum of weighted composition operators on the weighted Bergman spaces", Caspian Journal of Mathematical Sciences, 14, 1, 2025, 177-184. doi: 10.22080/cjms.2025.29040.1753
HARVARD
Haji Shaabani, M. (2025). 'Numerical range of a sum of weighted composition operators on the weighted Bergman spaces', Caspian Journal of Mathematical Sciences, 14(1), pp. 177-184. doi: 10.22080/cjms.2025.29040.1753
CHICAGO
M. Haji Shaabani, "Numerical range of a sum of weighted composition operators on the weighted Bergman spaces," Caspian Journal of Mathematical Sciences, 14 1 (2025): 177-184, doi: 10.22080/cjms.2025.29040.1753
VANCOUVER
Haji Shaabani, M. Numerical range of a sum of weighted composition operators on the weighted Bergman spaces. Caspian Journal of Mathematical Sciences, 2025; 14(1): 177-184. doi: 10.22080/cjms.2025.29040.1753