Let X be a non-empty set and H_X be the set of all mappings from X to P^*(X), when P^*(X) is the family of all non-empty subsets of X. In this paper, we define the hyperoperation \circledcirc on H_X such that (H_X;\circledcirc) is an Hv-semigroup. Then we prove that the fundamental relation \beta on H_X is the trivial relation.
Heidari, D. (2025). Constructing a new class of $H_v$-semigroups. Caspian Journal of Mathematical Sciences, 14(1), 137-142. doi: 10.22080/cjms.2025.28681.1745
MLA
Dariush Heidari. "Constructing a new class of $H_v$-semigroups", Caspian Journal of Mathematical Sciences, 14, 1, 2025, 137-142. doi: 10.22080/cjms.2025.28681.1745
HARVARD
Heidari, D. (2025). 'Constructing a new class of $H_v$-semigroups', Caspian Journal of Mathematical Sciences, 14(1), pp. 137-142. doi: 10.22080/cjms.2025.28681.1745
CHICAGO
D. Heidari, "Constructing a new class of $H_v$-semigroups," Caspian Journal of Mathematical Sciences, 14 1 (2025): 137-142, doi: 10.22080/cjms.2025.28681.1745
VANCOUVER
Heidari, D. Constructing a new class of $H_v$-semigroups. Caspian Journal of Mathematical Sciences, 2025; 14(1): 137-142. doi: 10.22080/cjms.2025.28681.1745