If we have a commutative ring $R$ and it is identified as $1\neq 0$ there is an $R$-module $M$, $G_R(M)$ will denote the Scalar product graph of $M$. Vertices of $G_R(M)$ are elements of $M$, and $a$, $b$ in $M$ are adjoining if $a=rb$ or $b=ra$ for some $r\in R$. In this paper, we investigate topological indices of the Scalar product graphs on some modules.
Nouri Jouybari, M. , & Faghani, M. (2024). Szeged and vertex PI Index of Graphs over Modules. Caspian Journal of Mathematical Sciences, 13(2), 410-416. doi: 10.22080/cjms.2024.27850.1721
MLA
Mostafa Nouri Jouybari; Morteza Faghani. "Szeged and vertex PI Index of Graphs over Modules", Caspian Journal of Mathematical Sciences, 13, 2, 2024, 410-416. doi: 10.22080/cjms.2024.27850.1721
HARVARD
Nouri Jouybari, M., Faghani, M. (2024). 'Szeged and vertex PI Index of Graphs over Modules', Caspian Journal of Mathematical Sciences, 13(2), pp. 410-416. doi: 10.22080/cjms.2024.27850.1721
CHICAGO
M. Nouri Jouybari and M. Faghani, "Szeged and vertex PI Index of Graphs over Modules," Caspian Journal of Mathematical Sciences, 13 2 (2024): 410-416, doi: 10.22080/cjms.2024.27850.1721
VANCOUVER
Nouri Jouybari, M., Faghani, M. Szeged and vertex PI Index of Graphs over Modules. Caspian Journal of Mathematical Sciences, 2024; 13(2): 410-416. doi: 10.22080/cjms.2024.27850.1721