Positive solutions for quasilinear system by using of weak sub-super solutions method and energy function

Document Type : Research Articles

Author

Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, South Mehrabad, Tehran, Iran

Abstract

‎In this paper we consider the quasilinear system‎
‎\[‎
‎\left\{\begin{array}{ll}‎
-‎\Delta_{p}u=\lambda g(x)f_{1}(u,v)+\mu h_{1}(u)‎ ~~~~ ‎in~‎~ ‎x\in\Omega‎
‎\\\\‎
-‎\Delta_{q}v=\lambda g(x)f_{2}(u,v)+\mu h_{2}(v)‎ ~~~~ ‎in~‎~ ‎x\in \Omega‎
‎\\\\‎
‎u(x)=v(x)=0‎ ~~~~ ‎on‎ ~~ ‎x\in\partial\Omega~~‎.
‎\end{array}\right‎.
‎\]‎
‎\\‎
‎where‎, ‎$\Omega$ is a bounded domain in $\mathbb{R}^n$ with smooth‎
‎boundary $\partial\Omega,$ $\lambda>0$ is a parameter‎. ‎Here $g$ is‎
‎$C^1$ sign-changing function that may be negative near the boundary‎
‎and $h_{1},h_{2},f_{1},f_{2}$ are nondecreasing and satisfy in‎
‎additional conditions that we shall express the follow‎. ‎Also we‎
‎introduce the energy functional associate our problem then by energy‎
‎functional we will discuss in context existence of solution for‎
‎said problem‎.
‎\end{abstract}‎

Keywords

Main Subjects