In this paper we deal with the existence of weak solution for a $p(x)$-Kirchhoff type problem of the following form
$$ \left\{\begin{array}{ll} -\left(a-b \int_{\Omega}\frac{1}{p(x)}|\Delta u|^{p(x)}\,dx\right)\Delta(|\Delta u|^{p(x)-2}\Delta u) =\lambda |u|^{p(x)-2}u+g(x,u) & \text{ in } \Omega,\\ u=\Delta u=0 & \textrm{ on } \partial\Omega. \end{array}\right. $$ Using the Mountain Pass Theoem, we establish conditions ensuring the existence result.
Mirzapour, M. (2024). Mountain pass solution for a p(x)-biharmonic Kirchhoff type equation. Caspian Journal of Mathematical Sciences, 13(1), 94-105. doi: 10.22080/cjms.2024.25125.1647
MLA
Maryam Mirzapour. "Mountain pass solution for a p(x)-biharmonic Kirchhoff type equation", Caspian Journal of Mathematical Sciences, 13, 1, 2024, 94-105. doi: 10.22080/cjms.2024.25125.1647
HARVARD
Mirzapour, M. (2024). 'Mountain pass solution for a p(x)-biharmonic Kirchhoff type equation', Caspian Journal of Mathematical Sciences, 13(1), pp. 94-105. doi: 10.22080/cjms.2024.25125.1647
VANCOUVER
Mirzapour, M. Mountain pass solution for a p(x)-biharmonic Kirchhoff type equation. Caspian Journal of Mathematical Sciences, 2024; 13(1): 94-105. doi: 10.22080/cjms.2024.25125.1647