In this paper, we consider invariant (α, β)- metrics which are induced by invariant Riemannian metrics and invariant vector fields on homogeneous spaces. We first study geodesic vectors and investigates the set of all homogeneous geodesics of (α, β)- metrics. Then we study the geometry of simply connected two-step nilpotent Lie groups of dimension five equipped with a left invariant (α, β)- metrics and we examine Lie algebras with 1-dimensional center, 2-dimensional center and 3-dimensional center.
Latifi, D., & Zeinali, M. (2023). Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of five dimensional. Caspian Journal of Mathematical Sciences, 12(2), 211-223. doi: 10.22080/cjms.2024.26330.1675
MLA
Dariush Latifi; Milad Zeinali. "Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of five dimensional", Caspian Journal of Mathematical Sciences, 12, 2, 2023, 211-223. doi: 10.22080/cjms.2024.26330.1675
HARVARD
Latifi, D., Zeinali, M. (2023). 'Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of five dimensional', Caspian Journal of Mathematical Sciences, 12(2), pp. 211-223. doi: 10.22080/cjms.2024.26330.1675
VANCOUVER
Latifi, D., Zeinali, M. Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of five dimensional. Caspian Journal of Mathematical Sciences, 2023; 12(2): 211-223. doi: 10.22080/cjms.2024.26330.1675