In this paper, we study the concept of $2_{\otimes}$-auto Engel groups. Among other results, we prove that for any group $G$, if every element of $G\otimes Aut(G)$ is $2_{\otimes}$-Engel group, then $\left<(g\otimes\alpha),(g\otimes\alpha)^{g^{\prime}\otimes\alpha^{\prime}}\right>$ is a nilpotent subgroup of class at most $2$ in $G\otimes Aut(G)$, for all $g,g^{\prime} \in G$ and $\alpha ,\alpha^{\prime}\in Aut(G)$.
Sajedi, M. , & Darabi, H. (2023). Some new properties of non-abelian tensor analogues of 2-auto Engel groups. Caspian Journal of Mathematical Sciences, 12(1), 204-210. doi: 10.22080/cjms.2023.22577.1612
MLA
Mostafa Sajedi; Hamid Darabi. "Some new properties of non-abelian tensor analogues of 2-auto Engel groups", Caspian Journal of Mathematical Sciences, 12, 1, 2023, 204-210. doi: 10.22080/cjms.2023.22577.1612
HARVARD
Sajedi, M., Darabi, H. (2023). 'Some new properties of non-abelian tensor analogues of 2-auto Engel groups', Caspian Journal of Mathematical Sciences, 12(1), pp. 204-210. doi: 10.22080/cjms.2023.22577.1612
CHICAGO
M. Sajedi and H. Darabi, "Some new properties of non-abelian tensor analogues of 2-auto Engel groups," Caspian Journal of Mathematical Sciences, 12 1 (2023): 204-210, doi: 10.22080/cjms.2023.22577.1612
VANCOUVER
Sajedi, M., Darabi, H. Some new properties of non-abelian tensor analogues of 2-auto Engel groups. Caspian Journal of Mathematical Sciences, 2023; 12(1): 204-210. doi: 10.22080/cjms.2023.22577.1612