Reverses of Féjer's Inequalities for Convex Functions

Document Type : Research Articles

Author

College of Engineering \& Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia

Abstract

Let f be a convex function on I and a, bI with a<b. If p: is Lebesgue integrable and symmetric, namely p(b+at)=p(t) for all t[a,b], then we show in this paper that
012ab|ta+b2|p(t)dt[f+(a+b2)f(a+b2)]abp(t)f(t)dt(abp(t)dt)f(a+b2)12ab|ta+b2|p(t)dt[f(b)f+(a)]
and
012ab[12(ba)|ta+b2|]p(t)dt[f+(a+b2)f(a+b2)](abp(t)dt)f(a)+f(b)2abp(t)f(t)dt12ab[12(ba)|ta+b2|]p(t)dt[f(b)f+(a)]..

Keywords