The aim of this paper is to introduce the notions of the length and the mean of a hyper structure in UP-algebras. The notions of length fuzzy UP-subalgebras and mean fuzzy UP-subalgebras of UP-algebras are introduced, and related properties are investigated. Characterizations of length fuzzy UP-subalgebras and mean fuzzy UP-subalgebras are discussed. Relations between length fuzzy UP-subalgebras (resp., mean fuzzy UP-subalgebras) and hyperfuzzy UP-subalgebras are established. Moreover, we discuss the relationships among length fuzzy UP-subalgebras (resp., mean fuzzy UP-subalgebras) and upper level subsets, lower level subsets, and equal level subsets of the length (resp., mean) of a fuzzy structure in UP-algebras.
Tacha, N., Phayapsiang, P., & Iampan, A. (2022). Length and Mean Fuzzy UP-subalgebras of UP-algebras. Caspian Journal of Mathematical Sciences, 11(1), 264-303. doi: 10.22080/cjms.2021.17121.1416
MLA
Narupon Tacha; Phongsakon Phayapsiang; Aiyared Iampan. "Length and Mean Fuzzy UP-subalgebras of UP-algebras", Caspian Journal of Mathematical Sciences, 11, 1, 2022, 264-303. doi: 10.22080/cjms.2021.17121.1416
HARVARD
Tacha, N., Phayapsiang, P., Iampan, A. (2022). 'Length and Mean Fuzzy UP-subalgebras of UP-algebras', Caspian Journal of Mathematical Sciences, 11(1), pp. 264-303. doi: 10.22080/cjms.2021.17121.1416
VANCOUVER
Tacha, N., Phayapsiang, P., Iampan, A. Length and Mean Fuzzy UP-subalgebras of UP-algebras. Caspian Journal of Mathematical Sciences, 2022; 11(1): 264-303. doi: 10.22080/cjms.2021.17121.1416