In this paper, considering the $k$th shape loop space $\check{\Omega}_{k}^{\mathbf{p}}(X,x)$, for an HPol$_*$-expansion $\mathbf{p}:(X,x)\rightarrow ((X_{\lambda},x_{\lambda}),[p_{\lambda\lambda'}],\Lambda)$ of a pointed topological space $(X,x)$, first we prove that $\check{\Omega}_{k}$ commutes with the product under some conditions and then we show that $\check{\Omega}_k^{\mathbf{p}}(X,x)\cong \displaystyle{\lim_{\leftarrow}\check{\Omega}_k^{\mathbf{p}}(X_i,x_i)}$, for a pro-discrete space $(X,x)=\displaystyle{\lim_{\leftarrow}(X_i,x_i)}$ of compact polyhedra. Finally, we conclude that these spaces are metric, second countable and separable.
Nasri, T. (2022). Shape Loop Space of Pro-discrete Spaces. Caspian Journal of Mathematical Sciences, 11(1), 242-249. doi: 10.22080/cjms.2020.18860.1518
MLA
Tayyebe Nasri. "Shape Loop Space of Pro-discrete Spaces". Caspian Journal of Mathematical Sciences, 11, 1, 2022, 242-249. doi: 10.22080/cjms.2020.18860.1518
HARVARD
Nasri, T. (2022). 'Shape Loop Space of Pro-discrete Spaces', Caspian Journal of Mathematical Sciences, 11(1), pp. 242-249. doi: 10.22080/cjms.2020.18860.1518
VANCOUVER
Nasri, T. Shape Loop Space of Pro-discrete Spaces. Caspian Journal of Mathematical Sciences, 2022; 11(1): 242-249. doi: 10.22080/cjms.2020.18860.1518