For an integer , a -distance enclaveless number (or -distance -differential) of a connected graph is . In this paper, we establish upper bounds on the -distance enclaveless number of a graph in terms of its diameter, radius and girth. Also, we prove that for connected graphs and with orders and respectively, , where denotes the direct product of and . In the end of this paper, we show that the -distance enclaveless number of a tree on vertices and with leaves satisfies inequality and we characterize the extremal trees.
Mojdeh, D. A. , & Masoumi, I. (2022). -distance enclaveless number of a graph. Caspian Journal of Mathematical Sciences, 11(1), 345-357. doi: 10.22080/cjms.2020.18967.1523
MLA
Doost Ali Mojdeh; Iman Masoumi. "-distance enclaveless number of a graph", Caspian Journal of Mathematical Sciences, 11, 1, 2022, 345-357. doi: 10.22080/cjms.2020.18967.1523
HARVARD
Mojdeh, D. A., Masoumi, I. (2022). '-distance enclaveless number of a graph', Caspian Journal of Mathematical Sciences, 11(1), pp. 345-357. doi: 10.22080/cjms.2020.18967.1523
CHICAGO
D. A. Mojdeh and I. Masoumi, "-distance enclaveless number of a graph," Caspian Journal of Mathematical Sciences, 11 1 (2022): 345-357, doi: 10.22080/cjms.2020.18967.1523
VANCOUVER
Mojdeh, D. A., Masoumi, I. -distance enclaveless number of a graph. Caspian Journal of Mathematical Sciences, 2022; 11(1): 345-357. doi: 10.22080/cjms.2020.18967.1523