Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

Document Type : Research Articles

Authors

1 Aligudarz Branch, Islamic Azad University

2 Khoy Faculty of Engineering, Urmia University, Urmia, Iran

Abstract

‎Let ΩX be a bounded‎, ‎circular and strictly convex domain in a complex Banach space X‎,
‎and H(ΩX) be the space of all holomorphic functions from ΩX to C‎.
‎The growth space Aν(ΩX) consists of all fH(ΩX)
‎such that |f(x)|Cν(rΩX(x)),xΩX,
‎for some constant C>0‎, ‎whenever rΩX is the Minkowski‎
‎functional on ΩX and ν:[0,1)(0,)
‎is a nondecreasing‎, ‎continuous and unbounded function‎.
‎For complex Banach spaces X and Y
‎and a holomorphic map φ:ΩXΩY‎, ‎put‎
Cφ(f)=fφ,fH(ΩY)‎.
‎We characterize those φ for which the composition operator‎
Cφ:Aω(ΩY)Aν(ΩX) is a bounded or compact operator‎.

Keywords