A $\it{weighted~slant~Toep}$-$\it{Hank}$ operator $L_{\phi}^{\beta}$ with symbol $\phi\in L^{\infty}(\beta)$ is an operator on $L^2(\beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $\beta=\{\beta_n\}_{n\in \mathbb{Z}}$ be a sequence of positive numbers with $\beta_0=1$. A matrix characterization for an operator to be $\it{weighted~slant~Toep}$-$\it{Hank}$ operator is also obtained.
Datt, G., Mittal, A. (2020). 'Weighted slant Toep-Hank Operators', Caspian Journal of Mathematical Sciences, 9(1), pp. 137-150. doi: 10.22080/cjms.2020.13482.1331
CHICAGO
G. Datt and A. Mittal, "Weighted slant Toep-Hank Operators," Caspian Journal of Mathematical Sciences, 9 1 (2020): 137-150, doi: 10.22080/cjms.2020.13482.1331
VANCOUVER
Datt, G., Mittal, A. Weighted slant Toep-Hank Operators. Caspian Journal of Mathematical Sciences, 2020; 9(1): 137-150. doi: 10.22080/cjms.2020.13482.1331