[1] A.T.Ali, Position vectors of slant helices in Euclidean space E3. Journal of the Egyptian Mathematical Society, 20 (2012), 1-6.
[2] B.Altunkaya, F.Kahraman, L.Kula and C.Aytekin, On rectifying slant helices in Euclidean 3-space. Konuralp J. Math. 4 (2016), 17-24.
[3] F.Do˘gan and Y.Yayli, On isophote curves and their characterizations. Turk J. Math, 39 (2015), 650-664.
[4] J.Monterde, Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion. Comput Aided Geomet Design, 26 (2009), 271-278.
[5] L.Kula and Y.Yayli, On slant helix and its spherical indicatrix. Applied Mathematics and Computation, 169 (2005), 600-607.
[6] M.Altinok and L.Kula, Slant helices generated by plane curves in Euclidean 3-space. Palestine Journal of Mathematics, 5(2) (2016), 164-174.
[7] M.I.Munteanu and A.I.Nistor, A New Approach on Constant Angle Surfaces in E3. Turk J Math, 33 (2009), 169-178.
[8] Paul D. Scofield, Curves of Constant Precession. The American Mathematical Monthly, 102 (1995), 531-537.
[9] P.Lucas and J.A.Ortega-Yagues, Slant helices in the Euclidean 3-space revisited. Bull. Belg. Math.Soc.Simon Stevin, 23 (2016), 133-150.
[10] S.Izumiya, H.Katsumi and T.Yamasaki, The rectifying developable and the spherical Darboux image of a space curve, Geometry and topology of caustics-Caustics ’98-Banach Center Publications 50 (1999), 137-149.
[11] S.Izumiya, K.Saji and N.Takeuchi, Flat surfaces along cuspidal edges, Journal of Singularities, 16 (2017), 73-100.
[12] S.Izumiya and N.Takeuchi, Generic properties of Helices and Bertrand curves. Journal of Geometry, 74 (2002), 97-109
[13] S.Izumiya and N.Takeuchi, New special curves and developable surfaces. Turk J Math, 28 (2004), 153-163.
[14] S.Izumiya and N. Takeuchi, Special Curves And Ruled Surface. Beitr¨age zur Algebra und Geometrie Contributions to Algebra and Geometry, 44 (2003), 203-212.
[15] S.Kaya, O.Ate¸s, I.Gok and Y.Yayli, Timelike clad helices and developable surfaces in Minkowski 3 space, Rend. Circ. Mat. Palermo, II. Ser (2018). https://doi.org/10.1007/s12215-018-0355-9
[16] S.Kaya and Y.Yayli, Generalized helices and singular points, Casp. J. Math. Sci., 6 (2) (2017), 121-132.
[17] T.Takahashi, N.Takeuchi. Clad helices and developable surfaces. Bulletin of Tokyo Gakugei University Division of Natural Sciences, 66 (2014), 1-9.