This paper deals with the Legendre wavelet (LW) collocation method for the numerical solution of the radial Schrodinger equation for hydrogen atom. Energy eigenvalues for the hydrogen bound system is derived -13.6 eV. Numerical results of the ground state modes of wave function for the hydrogen R(r) or the electron probability density function, has been presented. The numerical results have been compared to the other existing method and exact solution.
Sadeghi, M. , Mohammadi, F. , & Aalipour Ahmadi, N. (2019). Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet. Caspian Journal of Mathematical Sciences, 8(1), 35-42. doi: 10.22080/cjms.2018.11126.1301
MLA
Mahmoud Sadeghi; Fakhrodin Mohammadi; Niloufar Aalipour Ahmadi. "Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet", Caspian Journal of Mathematical Sciences, 8, 1, 2019, 35-42. doi: 10.22080/cjms.2018.11126.1301
HARVARD
Sadeghi, M., Mohammadi, F., Aalipour Ahmadi, N. (2019). 'Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet', Caspian Journal of Mathematical Sciences, 8(1), pp. 35-42. doi: 10.22080/cjms.2018.11126.1301
CHICAGO
M. Sadeghi , F. Mohammadi and N. Aalipour Ahmadi, "Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet," Caspian Journal of Mathematical Sciences, 8 1 (2019): 35-42, doi: 10.22080/cjms.2018.11126.1301
VANCOUVER
Sadeghi, M., Mohammadi, F., Aalipour Ahmadi, N. Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet. Caspian Journal of Mathematical Sciences, 2019; 8(1): 35-42. doi: 10.22080/cjms.2018.11126.1301