In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
kaya, S., & Yaylı, Y. (2017). Generalized Helices and Singular Points. Caspian Journal of Mathematical Sciences, 6(2), 131-142. doi: 10.22080/cjms.2017.1665
MLA
Seher kaya; Yusuf Yaylı. "Generalized Helices and Singular Points", Caspian Journal of Mathematical Sciences, 6, 2, 2017, 131-142. doi: 10.22080/cjms.2017.1665
HARVARD
kaya, S., Yaylı, Y. (2017). 'Generalized Helices and Singular Points', Caspian Journal of Mathematical Sciences, 6(2), pp. 131-142. doi: 10.22080/cjms.2017.1665
VANCOUVER
kaya, S., Yaylı, Y. Generalized Helices and Singular Points. Caspian Journal of Mathematical Sciences, 2017; 6(2): 131-142. doi: 10.22080/cjms.2017.1665