In this paper, we discuss the synchronization and anti-synchronization of two identical chaotic T-systems. The adaptive and nonlinear control schemes are used for the synchronization and anti-synchronization. The stability of these schemes is derived by Lyapunov Stability Theorem. Firstly, the synchronization and anti-synchronization are applied to systems with known parameters, then to systems in which the drive and response systems have one unknown parameter. Numerical simulations show the effectiveness and feasibility of the proposed methods.
Naderi, B. , Kheiri, H. , & Heydari, A. (2016). Anti-synchronization and synchronization of T-system. Caspian Journal of Mathematical Sciences, 5(2), 85-97. doi: 10.22080/cjms.2016.1661
MLA
Bashir Naderi; Hossein Kheiri; Aghileh Heydari. "Anti-synchronization and synchronization of T-system", Caspian Journal of Mathematical Sciences, 5, 2, 2016, 85-97. doi: 10.22080/cjms.2016.1661
HARVARD
Naderi, B., Kheiri, H., Heydari, A. (2016). 'Anti-synchronization and synchronization of T-system', Caspian Journal of Mathematical Sciences, 5(2), pp. 85-97. doi: 10.22080/cjms.2016.1661
CHICAGO
B. Naderi , H. Kheiri and A. Heydari, "Anti-synchronization and synchronization of T-system," Caspian Journal of Mathematical Sciences, 5 2 (2016): 85-97, doi: 10.22080/cjms.2016.1661
VANCOUVER
Naderi, B., Kheiri, H., Heydari, A. Anti-synchronization and synchronization of T-system. Caspian Journal of Mathematical Sciences, 2016; 5(2): 85-97. doi: 10.22080/cjms.2016.1661