In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and part of two sets of eigenvalues.
Shahriari, M., & Jodayree Akbarfam, A. A. (2017). Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions. Caspian Journal of Mathematical Sciences, 6(2), 107-119. doi: 10.22080/cjms.2017.1653
MLA
Mohammad Shahriari; Ali Asghar Jodayree Akbarfam. "Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions", Caspian Journal of Mathematical Sciences, 6, 2, 2017, 107-119. doi: 10.22080/cjms.2017.1653
HARVARD
Shahriari, M., Jodayree Akbarfam, A. A. (2017). 'Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions', Caspian Journal of Mathematical Sciences, 6(2), pp. 107-119. doi: 10.22080/cjms.2017.1653
VANCOUVER
Shahriari, M., Jodayree Akbarfam, A. A. Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions. Caspian Journal of Mathematical Sciences, 2017; 6(2): 107-119. doi: 10.22080/cjms.2017.1653