Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-trivial Ricci-flat quasi-Einstein warped product
Pal, B. , Bhattacharyya, A. , & Dey, S. (2017). Warped product and quasi-Einstein metrics. Caspian Journal of Mathematical Sciences, 6(1), 1-8. doi: 10.22080/cjms.2017.1635
MLA
Buddhadev Pal; Arindam Bhattacharyya; Santu Dey. "Warped product and quasi-Einstein metrics", Caspian Journal of Mathematical Sciences, 6, 1, 2017, 1-8. doi: 10.22080/cjms.2017.1635
HARVARD
Pal, B., Bhattacharyya, A., Dey, S. (2017). 'Warped product and quasi-Einstein metrics', Caspian Journal of Mathematical Sciences, 6(1), pp. 1-8. doi: 10.22080/cjms.2017.1635
CHICAGO
B. Pal , A. Bhattacharyya and S. Dey, "Warped product and quasi-Einstein metrics," Caspian Journal of Mathematical Sciences, 6 1 (2017): 1-8, doi: 10.22080/cjms.2017.1635
VANCOUVER
Pal, B., Bhattacharyya, A., Dey, S. Warped product and quasi-Einstein metrics. Caspian Journal of Mathematical Sciences, 2017; 6(1): 1-8. doi: 10.22080/cjms.2017.1635