Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN?: 1735-0611

CJMS. 4(2)(2015), 167-173

Approximate mixed additive and quadratic functional in 2-Banach spaces

Shirin Eivani 1 and Saeed Ostadbashi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran
${ }^{1}$ shirin.eivani@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran
${ }^{2}$ s.ostadbashi@urmia.ac.ir

Abstract

In the paper we establish the general solution of the function equation $f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+$ $2 f(2 x)-2 f(x)$ and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

Keywords: Linear 2-normed space, Hyers-Ulam-Rassias, Quadratic function, Additive function.
2000 Mathematics subject classification: 39B82, 47B45.

1. Introduction

In 1940, S. M. Ulam [8] gave a talk before the Mathematics club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(.,$.$) . Given \varepsilon>0$, does there exist a $\delta(\varepsilon)>0$ such that if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

[^0]for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \longrightarrow G_{2}$ with
$$
d(h(x), H(x))<\varepsilon
$$
for all $x \in G_{1}$
In 1941, D. H. Hyers (4) considered the case of approximately additive mappings $f: E \longrightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality
$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$
for all $x, y \in E$. It was shown that the limit
$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$
exists for all $x \in E$ and that $L: E \longrightarrow E^{\prime}$ is the unique additive mapping satisfying
$$
\|f(x)-L(x)\| \leq \varepsilon
$$

In 1978, Th. M. Rassias [7] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

In this paper, we deal with the next functional equation deriving from additive and quadratic functions:

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+2 f(2 x)-2 f(x) \tag{1.1}
\end{equation*}
$$

It is easy to see that the function $f(x)=a x^{2}+b x+c$ is a solution of the functional equation (1.1).

The main purpose of this paper is to establish the general solution of Eq. (1.1) and investigate the Hyers- Ulam- Rassias stability for Eq. (1.1).

We recall some basic facts concerning 2-Banach spaces and some preliminary results [2, 3].
Definition 1.1. Let X be a linear space over \mathbb{R} with $\operatorname{dim} X>1$ and let $\|.\|:, X \times X \longrightarrow \mathbb{R}$ be a function satisfying the following properties:
(1) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(2) $\|x, y\|=\|y, x\|$;
(3) $\|\alpha x, y\|=|\alpha|\|x, y\|$;
(4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$
for all $x, y, z \in X$ and $\alpha \in \mathbb{R}$. Then the function $\|.,$.$\| is called a$ 2-norm on X and the pair $(X,\|.,\|$.$) is called a linear 2-normed spaces.$ Sometimes the condition (4) called the triangle inequality.

We introduce a basic property of linear 2-normed spaces as follows.
Let $(X,\|.,\|$.$) be a linear 2-normed spaces, x \in X$ and $\|x, y\|=0$ for all $y \in X$. Suppose $x \neq 0$ and take y_{1}, y_{2} linearly independent (so nonzero) in X. The condition (1) implies that x and y_{1} are linearly
dependent. Thus there exist $\alpha_{1}, \beta_{1} \in \mathbb{R}$ such that $\left(\alpha_{1}, \beta_{1}\right) \neq(0,0)$ and $\alpha_{1} x+\beta_{1} y_{1}=0$, if $\beta_{1}=0$, we get $\alpha_{1} \neq 0$. So we have $x=-\frac{\beta_{1}}{\alpha_{1}} y_{1}=$ 0 , which is a contradiction. Thus we have $\beta_{1} \neq 0$ and $y_{1}=-\frac{\alpha_{1}}{\beta_{1}} x$. Similarly, there exist $\alpha_{2}, \beta_{2} \in \mathbb{R}$ such that $\beta_{2} \neq 0$ and $y_{2}=-\frac{\alpha_{2}}{\beta_{2}} x$. Hence y_{1} and y_{2} are linearly dependent, which is a contradiction. Therefore we have the following lemma.

Lemma 1.2. ([6]) Let $(X,\|.,\|$.$) be a linear 2-normed space. If x \in X$ and $\|x, y\|=0$ for all $y \in X$, then $x=0$.
Definition 1.3. A sequence $\left\{x_{n}\right\}$ in a linear 2-normed space X is called a cauchy sequence if there are two points $y, z \in X$ such that y and z are linearly independent,

$$
\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, y\right\|=0
$$

and

$$
\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, z\right\|=0 .
$$

Definition 1.4. A sequence $\left\{x_{n}\right\}$ in a linear 2-normed space X is called a convergent sequence if there is an $x \in X$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0
$$

for all $y \in X$. If $\left\{x_{n}\right\}$ converges to x, write $x_{n} \longrightarrow x$ as $n \rightarrow \infty$ and call x the limit of $\left\{x_{n}\right\}$. In this case, we also write $\lim _{n \rightarrow \infty} x_{n}=x$.

First we will quote some result by the authors in [5, 6, , which will be applied later on.
Lemma 1.5. If an even function $f: X \longrightarrow Y$ with $f(0)=0$ satisfies (1.1) for all $x, y \in X, X$ and Y will be real vector spaces, then f is quadratic.
Lemma 1.6. If an odd function $f: X \longrightarrow Y$ satisfies (1.1) for all $x, y \in X, X$ and Y will be real vector spaces, then f is additive.
Lemma 1.7. For a convergent sequence $\left\{x_{n}\right\}$ in a linear 2-normed space X,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|
$$

for all $y \in X$.
Lemma 1.8. Let $0<p \leq 1$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers. Then

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq \sum_{i=1}^{n} x_{i}^{p} .
$$

Definition 1.9. A linear 2-normed space in which every Cauchy sequence is a convergent sequence is called a 2-Banach space.

In this paper, we investigate approximate mixed additive and quadratic function in 2-Banach spaces.

2. Main Result

Throughout this paper, let X be a normed linear space and Y a 2 Banach space. In 1941, D. H. Hyers [4] obtained the first result on the stability of the Cauchy functional equation. In 1950, T. Aoki [1] generalized the Hyers result. It is the first result on the generalized Hyers-Ulam stability problem. In this section, we investigate the generalized HyersUlam stability of the equation (1.1) in 2-Banach spaces.

Theorem 2.1. Let $\theta \in[0, \infty), p, q, r \in(0, \infty)$ and $p+q>2$ and let $f: X \longrightarrow Y$ with $f(0)=0$ be a mapping satisfying

$$
\begin{align*}
\|D f(x, y), z\|= & \| f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y) \\
& -2 f(2 x)+2 f(x), z \| \\
\leq & \theta\|x\|^{p}\|y\|^{q}\|z\|^{r} \tag{2.1}
\end{align*}
$$

for all $x, y, z \in X$. Then there is a unique quadratic mapping $Q: X \longrightarrow$ Y such that

$$
\begin{equation*}
\|f(x)-Q(x), y\| \leq \frac{4+3^{q}}{\left(3^{p+q}\right)\left(2^{p+q}-4\right)} \theta\|x\|^{p+q}\|y\|^{r} \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.
Proof. By replacing y by $x+y$ in (2.1), we get

$$
\begin{align*}
& \|f(3 x+y)+f(x-y)-f(2 x+y)-f(y)-2 f(2 x)+2 f(x), z\| \\
\leq & \theta\|x\|^{p+q}\|z\|^{r}+\theta\|x\|^{p}\|y\|^{q}\|z\|^{r} \tag{2.3}
\end{align*}
$$

for all $x, y, z \in X$. Replacing y by $-y$ in (2.3), we get

$$
\begin{align*}
& \|f(3 x-y)+f(x+y)-f(2 x-y)-f(y)-2 f(2 x)+2 f(x), z\| \\
\leq & \theta\|x\|^{p+q}\|z\|^{r}+\theta\|x\|^{p}\|y\|^{q}\|z\|^{r} \tag{2.4}
\end{align*}
$$

for all $x, y, z \in X$. It follows from (2.1), (2.3) and (2.4),

$$
\begin{align*}
& \|f(3 x+y)+f(3 x-y)-2 f(y)-6 f(2 x)+6 f(x), z\| \\
\leq & 2 \theta\|x\|^{p}\|y\|^{q}\|z\|^{r}+2 \theta\|x\|^{p+q}\|z\|^{r} \tag{2.5}
\end{align*}
$$

for all $x, y, z \in X$. By letting $y=0$ and $y=3 x$ in (2.5), we get the inequalities

$$
\begin{gather*}
\|2 f(3 x)-6 f(2 x)+6 f(x), z\| \leq 2 \theta\|x\|^{p+q}\|z\|^{r}, \tag{2.6}\\
\|f(6 x)-2 f(3 x)-6 f(2 x)+6 f(x), z\| \leq\left(2+3^{q}\right) \theta\|x\|^{p+q}\|z\|^{r} \tag{2.7}
\end{gather*}
$$

for all $x, z \in X$. It follows from (2.6) and (2.7),

$$
\begin{equation*}
\|f(6 x)-4 f(3 x), z\| \leq\left(4+3^{q}\right) \theta\|x\|^{p+q}\|z\|^{r} \tag{2.8}
\end{equation*}
$$

for all $x, z \in X$. If we replace x by $\frac{x}{3}$ in 2.8 , we get

$$
\begin{equation*}
\|f(2 x)-4 f(x), z\| \leq \frac{4+3^{q}}{3^{p+q}} \theta\|x\|^{p+q}\|z\|^{r} \tag{2.9}
\end{equation*}
$$

for all $x, z \in X$. If we replace x in 2.9 by $\frac{x}{2^{n+1}}$ and multiply both sides of (2.9) by 4^{n}, then we have

$$
\begin{equation*}
\left\|4^{n+1} f\left(\frac{x}{2^{n+1}}\right)-4^{n} f\left(\frac{x}{2^{n}}\right), z\right\| \leq \frac{\left(4+3^{q}\right)}{\left(3^{p+q}\right)} \frac{2^{n(2-p-q)}}{2^{p+q}} \theta\|x\|^{p+q}\|z\|^{r} \tag{2.10}
\end{equation*}
$$

for all $x, z \in X$ and all non-negative integers n. For all integer m and n with $n \geq m$, we get

$$
\begin{align*}
& \left\|4^{n+1} f\left(\frac{x}{2^{n+1}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), z\right\| \\
\leq & \sum_{i=m}^{n} \frac{4+3^{q}}{\left(3^{p+q}\right)\left(2^{p+q}\right)} 2^{i(2-p-q)} \theta\|x\|^{p+q}\|z\|^{r} \tag{2.11}
\end{align*}
$$

for all $x, z \in X$. So we get

$$
\lim _{n, m \rightarrow \infty}\left\|4^{n+1} f\left(\frac{x}{2^{n+1}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right), z\right\|=0
$$

for all $x, z \in X$. Thus the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in Y. Since Y is a 2-Banach space, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \longrightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. That is,

$$
\lim _{n \rightarrow \infty}\left\|4^{n} f\left(\frac{x}{2^{n}}\right)-Q(x), y\right\|=0
$$

for all $x, y \in X$. Now, we show that Q is quadratic.
By lemma (1.7) and (2.1), we get

$$
\begin{aligned}
\|D Q(x, y), z\|= & \| Q(2 x+y)+Q(2 x-y)-Q(x+y)-Q(x-y) \\
& -2 Q(2 x)+2 Q(x), z \| \\
= & \lim _{n \rightarrow \infty} 4^{n}\left\|D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), z\right\| \\
\leq & \theta\|x\|^{p}\|y\|^{q}\|z\|^{r} \lim _{n \rightarrow \infty} 2^{n(2-p-q)}=0
\end{aligned}
$$

for all $x, y, z \in X$. By lemma (1.2),

$$
Q(2 x+y)+Q(2 x-y)=Q(x+y)+Q(x-y)+2 Q(2 x)-2 Q(x)
$$

for all $x, y \in X$. Letting $m=0$ and passing the limit $n \rightarrow \infty$ in (2.11), we get

$$
\begin{aligned}
\|f(x)-Q(x), y\| & =\lim _{n \rightarrow \infty}\left\|f(x)-4^{n} f\left(\frac{x}{2^{n}}\right), y\right\| \\
& \leq \frac{4+3^{q}}{\left(3^{p+q}\right)\left(2^{p+q}-4\right)} \theta\|x\|^{p+q}\|y\|^{r}
\end{aligned}
$$

for all $x, y \in X$.
Now, let $T: X \longrightarrow Y$ be another quadratic mapping satisfying (2.2). Then we have

$$
\begin{aligned}
\|Q(x)-T(x), y\| & =4^{n}\left\|Q\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right), y\right\| \\
& \leq 4^{n}\left[\left\|Q\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right), y\right\|+\left\|f\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right), y\right\|\right] \\
& \leq \frac{4+3^{q}}{\left(3^{p+q}\right)\left(2^{p+q-1}-2\right)} 2^{n(2-p-q)} \theta\|x\|^{p+q}\|y\|^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x, y \in X$. By lemma (1.2), we can conclude that $Q(x)=T(x)$ for all $x \in X$. This proves the uniqueness of Q.
Theorem 2.2. Let $\theta \in[0, \infty), p, q, r \in(0, \infty)$ and $p+q<2$ and let $f: X \longrightarrow Y$ with $f(0)=0$ be a mapping satisfying

$$
\begin{align*}
\|D f(x, y), z\|= & \| f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y) \\
& -2 f(2 x)+2 f(x), z \| \\
\leq & \theta\|x\|^{p}\|y\|^{q}\|z\|^{r} \tag{2.12}
\end{align*}
$$

for all $x, y, z \in X$. Then there is a unique quadratic mapping $Q: X \longrightarrow$ Y such that

$$
\|f(x)-Q(x), y\| \leq \frac{4+3^{q}}{\left(3^{p+q}\right)\left(4-2^{p+q}\right)} \theta\|x\|^{p+q}\|y\|^{r}
$$

for all $x, y \in X$.
Proof. By the same argument as in the proof of Theorem 2.1, we get

$$
\begin{equation*}
\|f(2 x)-4 f(x), z\| \leq \frac{4+3^{q}}{3^{p+q}} \theta\|x\|^{p+q}\|z\|^{r} \tag{2.13}
\end{equation*}
$$

for all $x, z \in X$. Replacing x by $2^{n} x$ and dividing 4^{n+1} in (2.13), we obtain

$$
\left\|\frac{1}{4^{n+1}} f\left(2^{n+1} x\right)-\frac{1}{4^{n}} f\left(2^{n} x\right), z\right\| \leq \frac{4+3^{q}}{4\left(3^{p+q}\right)} 2^{n(p+q-2)} \theta\|x\|^{p+q}\|z\|^{r}
$$

for all $x, z \in X$ and all integer $n>0$. For all integer m and n with $n \geq m$, we get
$\left\|\frac{1}{4^{n+1}} f\left(2^{n+1} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right), z\right\| \leq \sum_{i=m}^{n} \frac{4+3^{q}}{4\left(3^{p+q}\right)} 2^{i(p+q-2)} \theta\|x\|^{p+q}\|z\|^{r}$
for all $x, z \in X$. So we get

$$
\lim _{n, m \rightarrow \infty}\left\|\frac{1}{4^{n+1}} f\left(2^{n+1} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right), z\right\|=0
$$

for all $x, z \in X$. Thus the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y . Since Y is a 2 -Banach space, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. That is,

$$
\lim _{n \rightarrow \infty}\left\|\frac{1}{4^{n}} f\left(2^{n} x\right)-Q(x), y\right\|=0
$$

for all $x, y \in X$.
The further part of the proof is similar to the proof of Theorem 2.1.

References

1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2(1950), 64-66.
2. S. Gähler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115-148.
3. S. Gähler, Linear 2-normierte Raume, Math. Nachr. 28(1964) 1-43.
4. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27(1941) 222-224.
5. A. Najati and M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Baanach spaces, J. Math. Anal. Appl. 337 (2008) 339-415.
6. W. G. Park, Approximate additive mappings in 2-Banach spaces and related top$i c s$, J. Math. Anal. Appl. 376 (2011) 193-202.
7. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
8. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, (1960).

[^0]: ${ }^{1}$ Corresponding author: shirin.eivani@gmail.com Received: 17 July 2014
 Revised: 19 February 2015
 Accepted: 19 February 2015

