
Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

ISSN: 1735-0611

CJMS. 2(1)(2013), 1-9

On Rad-H-supplemented Modules

Y. Talebi 1 and M. Mirkarim 2

1 Department of Mathematics, University of Mazandaran, Babolsar,
Iran

2 Department of Mathematics, University of Mazandaran, Babolsar,
Iran

Abstract. Let M be a right R-module. We call M Rad-H-supplemented
if for each Y ≤ M there exists a direct summand D of M such that
(Y +D)/D ⊆ (Rad(M)+D)/D and (Y +D)/Y ⊆ (Rad(M)+Y )/Y .
It is shown that:

(1) Let M = M1 ⊕M2, where M1 is a fully invariant submodule
of M. If M is Rad-H-supplemented, then M1 and M2 are Rad-H-
supplemented. (2) Let M = M1⊕M2 be a duo module and Rad-⊕-
supplemented. If M1 is radical M2-sejective (or M2 is radical M1-
sejective), then M is Rad-H-supplemented. (3) Let M = ⊕n

i=1Mi

be a finite direct sum of modules. If Mi is generalized radical Mj-
projective for all j > i and each Mi is Rad-H-supplemented, then
M is Rad-H-supplemented.
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1. Introduction

In this paper, R denotes an associative ring with unity and all modules
are unitary right R-modules. A submodule N of M is called small in M
(denoted by N �M) if for every proper submodule L of M, N+L 6= M .
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Let N and L be submodules of M. Following [13], the module N is called
a supplement of L in M if it is minimal with respect to the property
N + L = M , equivalently, N + L = M and N ∩ L � L. The radical
of an R-module M, denoted by Rad(M) is defined as the intersection of
all maximal submodules of M. N is called a Rad-supplement of L in M,
if N + L = M and N ∩ L ⊆ Rad(L). M is called supplemented (Rad-
supplemented) if for each submodule A of M, there exists a submodule
B of M such that M = A + B and A ∩ B � B (A ∩ B ⊆ Rad(B)). M
is called weakly Rad-supplemented if for each submodule A of M, there
exists a submodule B of M such that M = A+B and A∩B ⊆ Rad(M).
M is called ⊕− supplemented if each submodule of M has a supplement
that is a direct summand of M. M is called Rad−⊕− supplemented if
each submodule of M has a Rad-supplement that is a direct summand
of M. Recall that M is lifting if for any submodule N of M, there exists a
direct summand K of M such that K ≤ N and N/K �M/K. A module
M is called H-supplemented if for every submodule A of M there exists a
direct summand D of M such that A+X = M if and only if D+X = M
for every submodule X of M (see[9]). A module M is called H-cofinitely
supplemented if for every cofinite submodule A of M (i.e. M/A finitely
generated) there exists a direct summand D of M such that A+X = M
if and only if D +X = M for every submodule X of M (see[6]).

M is called Rad-H-supplemented if for each Y ≤ M there exists a
direct summand D of M such that (Y +D)/D ⊆ (Rad(M) +D)/D and
(Y +D)/Y ⊆ (Rad(M) + Y )/Y .

A submodule A of a module M is called projection invariant in M if
f(A) ≤ A for any idempotent f ∈ End(M). If for any f ∈ End(M),
f(A) ≤ A, then A is called a fully invariant submodule of M. The mod-
ule M is called a duo module, if every submodule of M is fully invariant.
Recall that a module M has the summand intersection property, (SIP) if
the intersection of any two direct summands of M is again a direct sum-
mand. Recall from [1] that a module M is said to have P ∗ property if for
any submodule N ≤M there exists a direct summand D of M such that
D ⊆ N and N/D ⊆ Rad(M/D). We call M FI−P ∗-module if for every
fully invariant submodule A of M, there exists a direct summand D of
M such that D ⊆ A and A/D ⊆ Rad(M/D). Clearly every module with
property P ∗ is Rad-H-supplemented and every Rad−⊕−supplemented
module has FI − P ∗ property.

A module M is called ⊕-cofinitely radical supplemented (according to
[5], generalized ⊕-cofinitely supplemented) if every cofinite submodule of
M has a Rad-supplement that is a direct summand of M. Instead of a
⊕-cofinitely radical supplemented, we will use a cgs⊕-module.
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We give some new characterizations of Rad-H-supplemented mod-
ules. We investigate radical sejective modules. The direct sum of two
Rad-H-supplemented modules need not be Rad-H-supplemented. We
investigate finite direct sums of Rad-H-supplemented modules.

2. Rad-H-supplemented modules

Proposition 2.1. Let M be a module. If M is Rad-H-supplemented,
then for each Y ≤ M , there exists X ≤ M and a direct summand D of
M with Y ⊆ X and D ⊆ X such that X/Y ⊆ (Rad(M) + Y )/Y and
X/D ⊆ (Rad(M) +D)/D.

Proof. It follows from the definition Rad-H-supplemented module. �

Theorem 2.2. The following are equivalent for a module M:
(1) M is FI − P ∗.
(2) Every fully invariant submodule of M has a Rad-supplement which

is a direct summand.

Proof. (1) ⇒ (2) Suppose that M is FI − P ∗. Then for every fully
invariant submodule A of M, there exists a direct summand D of M
such that A/D ⊆ Rad(M/D). Let M = D⊕D′ for some submodule D′

of M. Since D ⊆ A, then A + D′ = M and from A/D ⊆ Rad(M/D),
we have A ⊆ Rad(M) + D. Hence A ∩ D′ ⊆ RadD′. So A has a
Rad-supplement which is a direct summand.

(2) ⇒ (1) Let A be a fully invariant submodule in M. Then M =
M1 ⊕M2 such that A+M2 = M and A ∩M2 ⊆ Rad(M2). Since A is a
fully invariant submodule in M, A = (A + M1) ∩ (A + M2) = A + M1.
Hence M1 ≤ A, A = (A∩M2)⊕M1 ⊆ Rad(M2)⊕M1 ⊆ Rad(M) +M1.
Hence A/M1 ⊆ Rad(M/M1). So M is FI − P ∗. �

Let M be a right R-module. We call M Rad-H-cofinitely supplemented
if for every cofinite submodule A of M (i.e. the factor module M/A is
finitely generated), there exists a direct summand D of M such that
(A+D)/D ⊆ (Rad(M) +D)/D and (A+D)/A ⊆ (Rad(M) +A)/A.

A module M is called local if the sum of all proper submodules of M
is a proper submodule of M. Recall from [2] that a module M is called
w-local if it has a unique maximal submodule. Clearly, local modules
are w-local.

Proposition 2.3. Let M = M1 ⊕M2 be a direct sum of submodules
M1 and M2. If M2 is a cgs⊕-module and every cofinite submodule of M
is fully invariant and contains M1, then M is Rad-H-cofinitely supple-
mented.

Proof. Suppose that M2 is a cgs⊕-module, then by [10, Theorem 2.3],
there exists a submodule K of M2 such that K is a direct summand of M,
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M = K +N and N ∩K ⊆ Rad(K) for every cofinite submodule N/M1

of M/M1. Hence N be a cofinite submodule of M. Thus M = K⊕K ′ for
some submodule K ′ of M. Since N = (N +K)∩ (N +K ′) = N +K ′, we
have K ′ ≤ N . So N = (N ∩K)⊕K ′ ⊆ Rad(K)⊕K ′ ⊆ Rad(M) +K ′.
Hence (N+K ′)/K ′ ⊆ (Rad(M)+K ′)/K ′ and (N+K ′)/N ⊆ (Rad(M)+
N)/N . Therefore M is Rad-H-cofinitely supplemented. �

Proposition 2.4. Let M be an R-module. Assume that for every max-
imal submodule A of M there exists a direct summand D of M such
that (A+D)/D ⊆ Rad(M/D) and every cofinite submodule contains D.
Then:

(1) M is cgs⊕-module.
(2) M is a w-local module if Rad(M) 6= M .

Proof. (1) Suppose that N is a cofinite submodule of M. Then M/N
is finitely generated. Hence M/N has a maximal submodule Q/N . So
Q is a maximal submodule of M. By hypothesis, there exists a direct
summand P of M such that (Q+P )/P ⊆ Rad(M/P ). Let M = P ⊕P ′
for some submodule P ′ of M. Hence M = N+P ′ and N ∩P ′ ⊆ Rad(P ′).
This shows that every cofinite submodule of M has a Rad-supplement
that is a direct summand of M. So M is cgs⊕-module.

(2) Let M be a module satisfying the assumptions of Proposition
and Rad(M) 6= M . Let A be a maximal submodule of M. Then there
exists a direct summand D of M such that (A + D)/D ⊆ Rad(M/D)
and every cofinite submodule contains D. In particular, every maximal
submodule of M contains D. So D ⊆ Rad(M). Since D is a direct
summand of M, we have Rad(M/D) = (Rad(M)+D)/D = Rad(M)/D.
Thus A ⊆ A + D ⊆ Rad(M). But Rad(M) ⊆ A. Then Rad(M)=A.
So M contains only one maximal submodule. Hence M is a w-local
module. Consequently, every module which satisfies the assumption of
Proposition is either radical (i.e. having no maximal submodules) or
w-local. �

Proposition 2.5. Let M be a Rad-H-cofinitely supplemented module.
Then for each maximal submodule Y of M, there exists a Rad-supplement
L of Y and a Rad-supplement K of L such that (Y +K)/K ⊆ Rad(M/K)
and every homomorphism f : M → M/(K ∩ L) can be lifted to the
homomorphism f̄ : M →M .

Proof. Suppose that Y is a maximal submodule of M. Then there exists
D,D′ ≤ M such that M = D ⊕ D′, (Y + D)/D ⊆ (Rad(M) + D)/D.
It is easy to show that D′ is a Rad-supplement of Y and D is a Rad-
supplement of D′. So it follows by taking D = K and D′ = L. �

Proposition 2.6. Let M be Rad-H-supplemented and N a fully invariant
submodule of M. Then M/N is Rad-H-supplemented.
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Proof. Let L/N ≤ M/N . Since M is Rad-H-supplemented, by Propo-
sition 2.1, there exists X ≤ M and a direct summand D of M such
that X/D ⊆ (Rad(M) + D)/D and X/L ⊆ (Rad(M) + L)/L. Let
M = D ⊕ D′, where D′ ≤ M . Since N is a fully invariant submod-
ule of M, N = (D ∩ N) + (D′ ∩ N) = (D + N) ∩ (D′ + N). So

(D + N)/N ⊕ (D′ + N)/N = M/N . It is easy to see that X/N
(D+N)/N ⊆

Rad(M/N)+(D+N)/N
(D+N)/N and X/N

L/N ⊆
Rad(M/N)+L/N

L/N . Therefore M/N is Rad-

H-supplemented. �

Theorem 2.7. Let M = M1 ⊕M2, where M1 is a fully invariant sub-
module of M. If M is Rad-H-supplemented, then M1 and M2 are Rad-
H-supplemented.

Proof. By Proposition 2.6, M2 is Rad-H-supplemented. Next, we show
that M1 is Rad-H-supplemented. Let K be a submodule of M1. Since M
is Rad-H-supplemented, there exists a direct summand D of M such that
(K +D)/K ⊆ (Rad(M) +K)/K and (K +D)/D ⊆ (Rad(M) +D)/D.
Write M = D ⊕ D′, where D′ ≤ M . Since M1 is a fully invariant
submodule of M, M1 = (M1∩D)⊕(M1∩D′). Hence (M1∩D) is a direct
summand of M1. We know that K + D ⊆ Rad(M) + K and K + D ⊆
Rad(M) +D. It is easy to see that K + (D ∩M1) ⊆ Rad(M1) +K and

K + (D ∩M1) ⊆ Rad(M1) + (D ∩M1). So K+(D∩M1)
K ⊆ Rad(M1)+K

K and
K+(D∩M1)
(D∩M1)

⊆ Rad(M1)+(D∩M1)
(D∩M1)

. Hence M1 is Rad-H-supplemented. �

Theorem 2.8. Let M = M1 ⊕M2. Assume that for every submodule
N of M1 there exists a direct summand K of M such that M2 ≤ K,
(N +K)/K ⊆ (Rad(M) +K)/K and (N +K)/N ⊆ (Rad(M) +N)/N .
Then M1 is Rad-H-supplemented.

Proof. Let L be a submodule of M1. By hypothesis, there exists a direct
summand K of M such that M2 ≤ K, (L+K)/K ⊆ (Rad(M) +K)/K
and (L+K)/L ⊆ (Rad(M) + L)/L. Now K = (K ∩M1)⊕M2. Hence
K ∩M1 is a direct summand of M1. Now L+K ⊆ Rad(M)+L and L+
K ⊆ Rad(M)+K. It is easy to see that L+(K∩M1) ⊆ Rad(M1)+L and

L+ (K ∩M1) ⊆ Rad(M1) + (K ∩M1). So L+(K∩M1)
(K∩M1)

⊆ Rad(M1)+(K∩M1)
(K∩M1)

and L+(K∩M1)
L ⊆ Rad(M1)+L

L . Therefore M1 is Rad-H-supplemented.
�

3. Radical Sejectivity

Let M1 and M2 be modules such that M = M1 ⊕M2. We say M1 is
radical M2-sejective if for every A ≤ M such that M = A+M2, there
exists K ≤ M such that M = K ⊕M2 and (A + K)/A ⊆ (Rad(M) +
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A)/A. M1 and M2 are called relatively radical sejective if M1 is radical
M2-sejective and M2 is radical M1-sejective.

Theorem 3.1. Let M = M1⊕M2 be a duo module and Rad-⊕-supplemented.
If M1 is radical M2-sejective ( or M2 is radical M1-sejective ), then M
is a Rad-H-supplemented module.

Proof. Let N be a submodule of M. Since M is Rad-⊕-supplemented,
there exists decomposition M = M1 ⊕ M2 such that M = N + M2

and N ∩M2 ⊆ Rad(M2) for some submodules M1 and M2. Since M1

is radical M2-sejective there exists K ≤ M such that M = K ⊕ M2

and (N + K)/N ⊆ (Rad(M) + N)/N . Now we show (N + K)/K ⊆
(Rad(M) + K)/K. Since M is a duo module, N is fully invariant and
N = (N + K) ∩ (N + M2) = N + K. Hence K ≤ N , N + K = N =
(N ∩M2) ⊕K ⊆ Rad(M) + K. So (N + K)/K ⊆ (Rad(M) + K)/K.
Therefore M is Rad-H-supplemented. �

Proposition 3.2. Let M be an FI − P ∗-module and X be a fully in-
variant submodule of M which is a direct summand in M. Then X is
FI − P ∗.
Proof. Let A be a fully invariant submodule in X. Then A is a fully
invariant submodule in M. Since M is FI − P ∗, A contains a direct
summand B of M such that A/B ⊆ Rad(M/B). Let M = B ⊕ B′

for some submodule B′ of M. Since A ⊆ Rad(B′) + B, we have A ⊆
Rad(X) +B. So A/B ⊆ Rad(X/B). Also B is a direct summand of X.
Therefore X is FI − P ∗. �

Let M and N be modules. Then N is called generalized radical M-
projective if for any K ≤ M and any homomorphism f : N → M/K,
there exists a homomorphism h : N → M such that Im(f − πh) ⊆
(Rad(M) +K)/K, where π : M →M/K is a natural epimorphism.

Proposition 3.3. Let M = M1 ⊕ M2. If M1 is generalized radical
M2-projective, then M1 is radical M2-sejective.

Proof. Let K ≤M and M = K +M2. Consider epimorphism π : M2 →
M/K given by m2 → m2 +K and the homomorphism h : M1 → M/K
given by m1 → m1 +K. Since M1 is generalized radical M2-projective,
there exists a homomorphism h̄ : M1 → M2 and a submodule X of M
with K ⊆ X such that Im(h − πh̄) = X/K ⊆ (Rad(M) + K)/K. Let
M3={a − (a)h̄| aεM1}. Clearly M = M2 ⊕M3. Since K + M3 ⊆ X,
(K + M3)/K ⊆ X/K. Hence, (K + M3)/K ⊆ (Rad(M) + K)/K. So
M1 is radical M2-sejective.

�

Proposition 3.4. Let M be a Rad-H-supplemented module. Then M/Rad(M)
is semisimple.
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Proof. Let N/Rad(M) ≤M/Rad(M). Since M is Rad-H-supplemented,
there exists a direct summand D of M such that (N+D)/D ⊆ (Rad(M)+
D)/D and (N +D)/N ⊆ (Rad(M) +N)/N . Let M = D⊕D′ for some
submodule D′ of M. Then M = D′ +N . It follows that M/Rad(M) =
N/Rad(M) + (D′ + Rad(M))/Rad(M). Since N ∩ D′ ⊆ Rad(D′),
M/Rad(M) = N/Rad(M)⊕(D′+Rad(M))/Rad(M). HenceM/Rad(M)
is semisimple. �

Recall that a module M is semilocal provided that M/Rad(M) is
semisimple.

Remark 3.5. Any Rad-H-supplemented is weakly Rad-supplemented.

Proof. Let M Rad-H-supplemented module. By proposition 3.4, M semilo-
cal. C. Lomp [8] proved that a module M is semilocal iff M is weakly
Rad-supplemented. Thus M weakly Rad-supplemented. �

Rad-H-supplemented=⇒weakly Rad-supplemented.

Theorem 3.6. Let M = M1 ⊕M2. Then:
(1) If M1 is radical M2-sejective (or M2 is radical M1-sejective) and

M1, M2 are Rad-H-supplemented, then M is Rad-H-supplemented.
(2) If M1 is generalized radical M2-projective (or M2 is generalized

radical M1-projective) and M1, M2 are Rad-H-supplemented, then M is
Rad-H-supplemented.

Proof. (1) Let Y ≤M .
Case 1: M = Y + M2. Since M1 is radical M2-sejective, there exists

M3 ≤M such that M = M3⊕M2 and (Y +M3)/Y ⊆ (Rad(M)+Y )/Y .
Since M/M3

∼= M2, M/M3 Rad-H-supplemented. Now consider the
submodule (Y + M3)/M3 of M/M3. By Proposition 2.1, there exists
X/M3 ≤ M/M3 and a direct summand D/M3 of M/M3 such that

X/M3

(Y+M3)/M3

∼= X
(Y+M3)

⊆ Rad(M)+(Y+M3)
(Y+M3)

and X/M3

D/M3

∼= X
D ⊆

Rad(M)+D
D .

Clearly, M = D ⊕ (M2 ∩ D′), so D is a direct summand of M. It is
easy to see that X/Y ⊆ (Rad(M) + Y )/Y . Therefore, M is Rad-H-
supplemented.

Case 2: M 6= Y + M2. Since M1, M2 are Rad-H-supplemented,
then M1, M2 are weakly Rad-supplemented. From [11, Propositions
3.2, 3.7], M/Y is weakly Rad-supplemented. So there exists a sub-
module K/Y of M/Y such that M/Y = K/Y + (Y + M2)/Y and
(K ∩ (Y + M2))/Y ⊆ Rad(M/Y ). Then M = K + M2. Since M1

is radical M2-sejective, there exists M4 ≤ M such that M = M2 ⊕
M4 and (K + M4)/K ⊆ (Rad(M) + K)/K. Now M/M2 and M/M4

are Rad-H-supplemented. Therefore, there exists submodules X1/M2

of M/M2, X2/M4 of M/M4, direct summands D1/M2 of M/M2 and
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D2/M4 of M/M4 such that X1
(Y+M2)

⊆ Rad(M)+(Y+M2)
(Y+M2)

, X1
D1
⊆ Rad(M)+D1

D1
,

X2
(K+M4)

⊆ Rad(M)+(K+M4)
(K+M4)

and X2
D2
⊆ Rad(M)+D2

D2
. Clearly, D1 ∩ D2 is

a direct summand of M and (X1∩X2)
(D1∩D2)

⊆ Rad(M)+(D1∩D2)
(D1∩D2)

. Since X2 ⊆
Rad(M) + (K +M4) ⊆ Rad(M) +K, X2 ∩M2 ⊆ Rad(M2) + (K ∩M2)
and (X2 ∩ M2) + Y ⊆ Rad(M) + Y . As X1 ⊆ Rad(M) + Y + M2,

X1 ∩X2 ⊆ Rad(M) + Y . Thus (X1∩X2)
Y ⊆ Rad(M)+Y

Y . So M is Rad-H-
supplemented.

(2) By Proposition 3.3, M1 is radical M2-sejective. So the proof fol-
lows by (1). �

Lemma 3.7. Let A, M1, M2,...,Mn be modules. If each Mi is gener-
alized radical A-projective for i = 1, 2, ..., n, then ⊕n

i=1Mi is generalized
radical A-projective.

Proof. The proof is straightforward. �

Corollary 3.8. Let M = ⊕n
i=1Mi be a finite direct sum of modules.

If Mi is generalized radical Mj-projective for all j > i and each Mi is
Rad-H-supplemented, then M is Rad-H-supplemented.

Proof. It follows from Theorem 3.6(2) and Lemma 3.7. �

Proposition 3.9. Let M = M1⊕M2. Then M2 is FI−P ∗ if and only if
for every fully invariant submodule N/M1 of M/M1, there exists a direct
summand K of M such that K ≤M2, M = K+N and N∩K ⊆ Rad(K).

Proof. Suppose that M2 is FI − P ∗. Let N/M1 be a fully invariant
submodule of M/M1. It is easy to see that N ∩M2 is fully invariant in
M2. Since M2 is FI−P ∗, there exists a decomposition M2 = K⊕K ′ such
that M2 = (N ∩M2) +K and N ∩K ⊆ Rad(K). Clearly, M = K +N .

Conversely, suppose that M/M1 has the stated property. Let H be a
fully invariant submodule of M2. It is easy to see that (H ⊕M1)/M1 is
fully invariant in M/M1. By hypothesis, there exists a direct summand
L of M such that L ≤M2, M = L+H+M1 and L∩(H+M1) ⊆ Rad(L).
By modularity, we have M2 = L+H. It follows easily that L is a Rad-
supplement of H in M2. Therefore, M2 is FI −P ∗ by Theorem 2.2. �
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