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ABSTRACT. This study investigates the ability of classical stochastic
differential equations models to replicate the real behavior of AAPL
stock prices over the 2020-2024 period. Several models from stochas-
tic calculus—including standard Brownian motion, geometric Brownian
motion, Brownian motion with drift, Brownian bridge, and the Ornstein—
Uhlenbeck process—are implemented and analyzed, along with their cor-
responding simulation algorithms. Using actual adjusted price data, each
model is simulated and compared with the observed price trajectory, with
particular attention to key features such as hitting times, exit times, long-
term trends, and mean-reversion behavior. The results indicate how these
models can be applied to capture the structural and random components
of financial time series. The analysis suggests that while classical models
provide useful insights into certain statistical aspects of asset prices, they
also exhibit limitations in capturing complex market behavior. To en-
sure full reproducibility and methodological transparency, all simulations
were performed in R, and the appendix includes the corresponding code,
visualizations, and explicit algorithms for all models. This comparative
framework may support future efforts in selecting or combining stochastic
models for more robust financial forecasting.
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1. INTRODUCTION

Stochastic calculus is a branch of mathematics employed to model phe-
nomena exhibiting non-deterministic behavior over time. One of its most
fundamental tools is the Brownian motion process, which, due to its well-
established mathematical structure and favorable statistical properties,
has been widely used in financial modeling—particularly in asset pric-
ing. Assuming that price fluctuations occur randomly over time, models
such as the standard Brownian motion or its extended form, the GBME,
are employed to describe the dynamics of asset prices or returns. These
models are capable of simulating market volatility and constitute the
foundation of many financial pricing formulas, most notably the well-
known Black—Scholes model. Nevertheless, simplifications such as the
assumption of normally distributed returns or the absence of directional
trends in price movements introduce certain limitations to these classical
models.

To address some of these limitations, more advanced concepts have
been introduced, including hitting times and exit times. These refer to
the first moments at which a stochastic process reaches a predetermined
level or exits a predefined interval. For instance, the moment when
the price of a stock reaches a given threshold may correspond to the
triggering of a buy /sell order, the onset of bankruptcy, or the activation
of an option contract. The calculation of the probability and distribution
of such first-passage times is of critical importance in risk management
and the pricing of path-dependent derivatives.

In addition, other stochastic processes such as the Brownian bridge
and the OUE process have been developed to model constrained or mean-
reverting behaviors. A Brownian bridge is constructed by conditioning
a Brownian motion to take fixed values at both the initial and terminal
points of a given interval. This constraint causes the path to exhibit
bridge-like behavior: it fluctuates randomly in the interior of the inter-
val but is bound to return to the specified terminal value. The Brownian
bridge is a Gaussian and Markov process and can be interpreted as the
conditional distribution of a Brownian path given its endpoints. It is
particularly useful for comparing simulated trajectories with real asset
prices and for identifying to what extent observed fluctuations are purely
stochastic or influenced by structural trends. The Ornstein—Uhlenbeck
process, on the other hand, is especially applicable in modeling mean-
reverting time series, such as interest rates. It is characterized by a
tendency to revert toward a long-term equilibrium level over time. This
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behavior is of great interest in financial contexts where certain quanti-
ties (e.g., spread between asset prices, interest rates) exhibit temporary
deviations but eventually return toward their mean.

The basic price model can be expressed in discrete time as S(n+1) =
S(n) + B(n) where B(n) is a Gaussian random variable, enabling high-
frequency modeling at granular time intervals [15]. Separating jump
components from Gaussian noise in returns significantly reduces volatil-
ity estimation error, highlighting the importance of modeling jumps
for accurate risk assessment [15]. In [9], the traditional jump-diffusion
model is extended to a Lévy process model with stochastic interest rates
for European-style option pricing. In [8], the simultaneous long—short
stock-trading result is generalized and the stability of the model is guar-
anteed w.r.t. stock prices that are controlled by a geometric Brownian
motion whose drift and volatility parameters are unknown to the trader.
Under idealized market conditions where stock prices follow a non-trivial
Geometric Brownian Motion, combining two static linear feedbacks - one
long and one short - results in a positive expected trading gain for all
t > 0, regardless of the model parameters [[7]. In an idealized market, it
is assumed that the trader can transact continuously, that the market
has perfect liquidity, and that the trader is a price taker, operating with-
out transaction costs or resoyrce constraints [7]. In [16], modeling was
performed using the ARIMAE and logistic regression time series mod-
els and VECH, LSTME, XGBoost!, and Prophet in predicting the stock
price of AAPLH. Real AAPL market data shows that if actual market
volatility can be estimated accurately on a moment-by-moment basis, it
becomes possible both to better control the risk of daily trading and to
design short-term strategies that profit from these volatility changes. In
[14], the average run length of homogenously weighted moving average
control chart is analyzed for Apple Inc. data. The Geometric Brownian
motion is used as a suitable model in stock prices (see [L1, 13]).  The
Brownian bridges are also used for modeling financial data (see [3, 4]).
In [2], the optimal stopping of a Brownian bridge and its application to
American option trading are investigated. Applications of the Ornstein-
Uhlenbeck process in finance are mentioned as examples in [2, 6]. In [17],
the first hitting time and option pricing problem under the geometric
Brownian motion with singular volatility are discussed. In [1], the first
exit time of the geometric Brownian motion from stochastic exponential
boundaries is also analyzed.
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The present study investigates the performance of classical stochastic
calculus models in replicating the actual price behavior of AAPL stock.
Specifically, we analyze and simulate the adjusted closing prices over
the 2020-2024 period using various models, including the GBM, The
Brownian motion with drift, The Brownian bridge, and the Ornstein—
Uhlenbeck process. For each model, the simulated path is compared with
real price data, and key features such as hitting and exit points relative
to defined thresholds are identified and analyzed. The simulation codes
and technical implementation details for each model are provided in the
appendix.

The structure of this paper is as follows. In Section E, we will present
the theoretical background and essential concepts from stochastic calcu-
lus that underpin the models implemented in this study, including stan-
dard Brownian motion, geometric Brownian motion, Brownian motion
with drift, Brownian bridge, and the Ornstein-Uhlenbeck process, along
with their corresponding simulation algorithms. Section J, presents the
main simulations and analyses, where various stochastic models are ap-
plied to real stock data to evaluate their ability to replicate observed
financial behavior. Section Hl, offers concluding remarks and discusses
potential directions for future research. Also, all implementation de-
tails and simulation codes are provided in the appendix to ensure full
reproducibility of the results.

2. PRELIMINARIES AND THEORETICAL FOUNDATIONS

To analyze the behavior of stock prices and evaluate the extent to which
mathematical models can replicate real market dynamics, it is essential
to understand some foundational concepts in stochastic calculus. This
section, provides a concise introduction to these key notions.

A stochastic process is, simply put, a sequence of random variables
that depend on time. More formally, a stochastic process is a collection
of random variables {X;;¢ € I'}. The index t typically represents time,
and the set I is considered the index set of the process.

Since financial data such as stock prices or cumulative returns exhibit
fluctuations over time, stochastic processes are considered natural and
effective tools for their analysis. A set of mathematical and statistical
tools has been developed to examine these processes more precisely. Be-
cause these tools are intertwined with classical calculus (i.e., concepts
like derivatives and integrals), they are collectively referred to as sto-
chastic calculus.

The Brownian motion process, also known as the Wiener process, is
one of the most fundamental continuous-time stochastic processes. It
is widely used in modeling random phenomena, particularly in financial
mathematics. This process provides a framework to represent purely
random changes occurring over time.



Stochastic modeling of AAPL stock using stochastic differential equation models 5

A stochastic process {B(t);t > 0} is called a standard Brownian mo-

tion (or Wiener process) [5], if it satisfies the following conditions:

e B(0) =0;

e B(t) is a continuous function in ¢;

e Each increment B(s+t) — B(s) is stationary and distributed as

N(0,0%t);

e The increments are independent.
Stochastic volatility models extend this framework by allowing the vari-
ance to evolve randomly OVGE time; prominent examples include the He-
ston model and the GARCHH family [15]. In real financial markets, vari-
ance is not constant, producing heteroskedastic processes; ARCHH and
GARCH models are widely used to capture such time-varying volatility
[15]. The Brownian motion serves as a useful model when considering
stock returns as purely random fluctuations with no trend. In this study,
the standard Brownian motion is used to reconstruct the cumulative log-
return path of AAPL stock. Using this model, we analyze key metrics
such as hitting times and exit times, which are discussed below.

Among the core concepts in the study of stochastic processes are hit-

ting times and exit times, which play a significant role in analyzing
random paths. The hitting time refers to the first moment when the tra-
jectory of a stochastic process reaches a given threshold «. For Brownian
motion B(t), the hitting time is defined as T,, = inf {t > 0; B(t) = a}.
Also, the exit time from an interval (a,b), denoted 7 , is defined as the
minimum time the process hits either boundary, i.e., 7 = min (T,, Tp).

Theorem 2.1. ([b]). If a <z < b, then P, (1 < 00) =1 and E,7 < 0.

The Theorem @ shows that the probability that the exit time 7 is
finite, given the Brownian motion starts at z is equal to 1, and the
expected (mean) exit time from the interval (a,b), given the starting
point is x is finite. The Theorem guarantees two key properties for
a Brownian motion starting inside the interval (a,b),:

1. Certain Exit: The process will definitely (with probability 1)
eventually exit the interval (a,b). It cannot stay trapped inside
forever.

2. Finite Average Time: Not only does it exit, but it does so in
a finite amount of time on average. The expected or mean exit
time, E,7, is a finite number.

This result is fundamental in many applications (like finance, physics, or
queueing theory), because it assures us that the event of leaving a certain
state or region is not just certain, but also happens in a manageable,
predictable timeframe on average. We don’t have to wait an infinitely
long time for it to occur. For the standard Brownian motion (variance

9Generalized Autoregressive Conditional Heteroskedasticity
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parameter 1) started at x € (a, b) one has closed-form expressions for the
exit probabilities and the mean exit time. In particular the probability
of exiting at the right endpoint b before the left endpoint a is P, {T} <
T,} = $=3 and the expected exit time from (a, b) is E,7 = (x—a)(b—x).
These formulae quantify both the directional bias of exit and the typical
time-scale for leaving the interval in the driftless case. This quadratic

. . . . b—a)? .
form achieves its maximum at x = “TH’ with value 4a) , confirming

finite expected exit time as guaranteed by Theorem P.1.

s WW "\'\/\'\‘v
o
= Barrier
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= Pathj
Time

FIGURE 1. Sample trajectories of a stochastic process
with a barrier level. Path i reaches the hitting time,
while path j remains below it.

Theorem @, implies that if a Brownian motion starts from a point
within a bounded interval (a,b), it will almost surely exit the interval in
finite time. Moreover, not only is the exit certain, but the expected time
to exit is also finite. In other words, on average, the process does not
remain within the interval (a,b) indefinitely and will eventually leave it
after a finite amount of time. Figure [ll illustrates this behavior.

The standard Brownian motion B(t) is the fundamental building
block of continuous-time stochastic processes. It can be simulated by
cumulatively summing independent, normally distributed increments. A
formal infinitesimal representation of the Brownian increment is dB(t) =
Z/dt where Z; ~ N(0,1). Now Discrete simulation algorithm is in-
troduced. Let the time grid be 0 =ty < t; < --- < ty = T with
At = t; — t;—1 (assumed constant). A simulated path of B(t) on this
grid is obtained as follows:

1. Set B(tp) = 0;
2. Fori=1,...,N:
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e Generate Zil'l'\?'N(O, 1);

e Update the path B(t;) = B(t;_1) + Z;VAt;

3. The sequence B(tg), B(t1), ..., B(ty) is a simulated path of the
standard Brownian motion.

For completeness, we recall several probabilistic properties used by the
simulation. The standard Brownian motion has independent, stationary
Gaussian increments B(t)—B(s) ~ N(0, t—s), 0 < s < t and increments
over disjoint intervals are independent. It is self-similar with index %,
i.e., for any ¢ > 0 the process {¢"'/2B(ct)};>o has the same law as
{B(t)}+>0. Moreover, the quadratic variation on a partition 0 = ¢y <
- < t, =t satisfies 3.7 (B(t;) — B(ti_1))? L tas max;(t; —ti—1) —
0. Finally, Brownian paths are almost surely continuous but nowhere
differentiable, so the formal differential dB(¢) must be interpreted in the
stochastic (It6) sense.

A Brownian motion with drift parameter u and variance parameter
o2 is defined as W (t) = ut + o B(t) where B(t) is a standard Brownian
motion. This process exhibits a linear drift component W (t) = ut +
oB(t) and volatility scaled by o. A simulated path of W(¢) on this grid
is obtained as follows. Let 0 = tg < t1 < -+ <ty =T with At = t;,—t;_1
(assumed constant). For a drifted Brownian motion W (t) = ut + o B(t)
simulate as follows:

1. Initialize B(tg) =0, W (to) = 0;

2. Forv=1,...,N:

e Generate Zi"l;ﬂi'N((), 1);

e Update the standard Brownian motion path: B(t;) = B(t;—1) +
ZiV At

e Update the drifted Brownian motion path: W (t;) = ut;+oB(t;);

3. The sequence W (tg), W(t1),..., W (tn) is a simulated path of the

drifted Brownian motion with drift ; and variance parameter o2.

Despite its fundamental role in stochastic theory, the Brownian motion
alone is insufficient for realistically modeling asset prices, as it can take
negative values something that real asset prices, by nature, cannot do.
To address this limitation, a modified version known as the geometric
Brownian motion has been introduced. Suppose that, {B(¢);t >0} isa
standard Brownian motion and W (t) = ut 4+ o B(t). Then the geometric
Brownian motion with drift parameter j, volatility o2, and initial price
Zo, is defined as Z(t) = Zy - V') = 7, . ert+oBO) [5],

One of the drawbacks of the GBM model is that it assumes identically
distributed normal returns over fixed time intervals, without considering
whether the magnitude of price changes is reasonable relative to the
initial price level. For example, it is clear that the probability of a
stock price dropping from $20 to $15 in a month is not the same as
the probability of it falling from $10 to $5 over the same period. It is
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worth mentioning that, the geometric Brownian motion is a continuous-
time stochastic process where the logarithm of the asset price follows a
Brownian motion with drift. It combines a deterministic growth term,
such as an interest rate, with a random component driven by normally
distributed noise. This model is widely used in stock price simulation,
because it produces lognormally distributed prices and captures both
the average growth rate and the volatility of returns [13].

In this approach, the stock price at time ¢ is obtained from its pre-
vious value by adding a drift term adjusted for volatility and a random
noise term. This makes the GBM suitable for simulating realistic stock
price paths over time, especially when combined with historical volatility
estimates [13].

The GBM is used to model the stock price Z(t). The simulation
involves an exponential transformation of a process with drift. Consider
the SDE®,

dZ(t) = pZ(t)dt + o Z(t)dB(t).

The simulation algorithm is as follows:

1. Set Z(0) to the observed initial AAPL price;

2. Estimate p (drift) and o (volatility) from the historical log-

returns;

3. Fori=1,...,N:

o Generate Z; =" N(0,1);

e Update Z(t;) = Z(t;—1) exp ((,u, — 30?%) At + UZZ‘\/E).
For GBM one has an exact transition law and simple estimators that
are convenient in simulation and inference. In particular

log Z(t) ~ N(log Z(0) + (u — 1o?)t, o*t)
so Z(t) follows a lognormal distribution with expectation
B[Z(t)] = Z(0)e""
and variance ,
Var[Z(t)] = Z(0)2e®(e7t — 1).
Given discrete observations on a regular grid with step At and log-

Z(t:) ;o ; Ao
Z(ti—l))’ i = 1,...,n, the usual estimators are g =

L +i62and 6% = >0 (i — 7)? where 7 = L5~  r;. Finally, for
pricing or risk-neutral simulations replace p by the risk-free rate r (i.e.
i — 1) so that the discounted price process is a martingale.

Suppose {B(t);t > 0} is a Brownian motion, and we consider its val-
ues over the interval (0, 1) under the conditions B(1) = 0 and B(0) = 0.
Then, the process

{B°(t);t >0} = {B(t);0 < t < 1|B(0) = B(1) = 0}

returns r; = log(

Hg¢ochastic Differential Equation
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is called a Brownian Bridge [p] (see Figure E for an illustration).

Sample Standard Brownian Bridge

-04 -02 00 02

-0.6

-0.8

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. An example of a standard Brownian bridge
starting at zero, fluctuating over the interval, and return-
ing to zero at the final time.

The Brownian bridge process can be explicitly constructed from stan-
dard Brownian motion by B°(t) = B(t) — tB(1), 0 < t < 1, which satis-
fies the boundary conditions BY(0) = B°(1) = 0 almost surely. We have
E[B°(t)] = 0, Cov(B"(s), BY(t)) = min(s,t) — st, Cov(B°(s), B’(t)) =
min(s,t) —st, 0 < s,t < 1. For0 < s <t <1, B%t)| B%s) =y ~

N (y- 425 00 L

Let 0 =ty < t; < --- < t, = 1. To simulate a Brownian bridge on
this grid:
1. Set B%(0) = 0 and B°(1) = 0;
2. For each intermediate point ¢; simulate

0 (1—t)BO(ti—1)+t:BO(1)  (ti—ti—1)(1—ts)
B (tl) ~ N( 1—ti1,1 ’ ( 1_t1i71 )

»

The Brownian bridge is widely used in statistics (e.g. goodness-of-fit
tests), quantization theory, and as a building block for more complex
stochastic processes.

In this study, since the process returns to a fixed value (zero) at both
the beginning and end of the interval, it can be compared with the actual
price path to assess how much of the observed price variation is due to
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pure random fluctuations and how much may be attributed to structural
trends in the market.

Let {B(t);t > 0} be a standard Brownian motion on [0,T]. The Brow-
nian bridge pinned to B(0) = a and B(T) = b can be represented as
B(t) = B(t)—%B(T), 0 < t < T'and, when pinned to endpoints a and b,
one uses the appropriate affine adjustment. The affine form with explicit
endpoints is B47(t) = a+ (B(t) — B(0)) — £(B(T) — B(0)) + 4(b—a).

On a discrete grid 0 = ¢ < t1 < --- < ty = T, given a simu-
lated Brownian path {B(t;)}Y, with B(tg) = a, the bridge values are
computed by B*7b(t;) = B(t;) — %(B(T) —b), i = 0,..., N, so that
{B*°(t;)}Y, is a Brownian bridge from a to b. Equivalently, one may
simulate directly from the conditional Gaussian laws on the grid or use
iterative midpoint conditioning for improved accuracy when refining the
mesh.

The simulation algorithm is as follows. Let 0 = tg < t; < -+ <
ty =T and assume a simulated Brownian motion path {B(t;)}Y, with
B(0) = a is available. A Brownian bridge from a to b on this grid is
obtained by:

1. Simulate a standard Brownian motion path {B(tp),...,B(tn)}
with B(ty) = a;

2. For each grid point ¢; compute the pinned value B°(t;) = B(t;) —
L(B(T) — b);

3. The sequence {B°(ty),..., B(ty)} is a Brownian bridge from a
to b.

Equivalently, one may simulate the bridge directly using the conditional
Gaussian distributions on the grid or by the iterative midpoint condi-
tioning scheme for higher accuracy when refining the grid.

The Ornstein—Uhlenbeck model is one of the most important stochas-
tic calculus processes, widely used in finance, economics, and physics.
This model is typically employed to describe variables that exhibit os-
cillatory behavior around a long-term equilibrium level. The mean-
reverting property intrinsic to the Ornstein-Uhlenbeck process renders it
exceptionally valuable for modeling a variety of financial and economic
variables that naturally fluctuate around a long-term equilibrium level.
Its analytical tractability and realistic dynamic have led to its adoption
in several cornerstone financial models. A prominent application is the
Vasicek model for interest rate modeling, where the OU process captures
the tendency of interest rates to revert to a long-run mean, influenced
by economic cycles and central bank policies. Similarly, in commod-
ity markets, the process is effectively used to model prices that revert
to marginal production costs, as high prices stimulate supply and low
prices curb it, creating a natural equilibrium mechanism. Furthermore,
the OU process serves as a fundamental building block in stochastic
volatility frameworks, such as the Scott model, where it describes the
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FiGURE 3. Simulated paths of the Ornstein—Uhlenbeck
model starting from different initial values. All paths
tend to revert toward the common mean over time.

evolution of an unobserved volatility process that meanders around a
long-term average, thus capturing the well-documented phenomenon of
volatility clustering in asset returns. Beyond these direct modeling ap-
plications, the statistical properties of the OU process are harnessed in
trading strategies. It forms the theoretical foundation for pairs trading
and statistical arbitrage, where traders identify two assets whose price
spread is mean-reverting. Deviations from the historical equilibrium of
this spread signal trading opportunities, with the expectation that the
spread will revert to its mean. Consequently, the Ornstein-Uhlenbeck
process provides a powerful and versatile tool for representing the dy-
namics of key economic variables like interest rates, exchange rates, and
commodity prices, whose behavior is characterized by a persistent pull
towards a fundamental equilibrium level.

It is defined by the following SDE, dX (t) = 0(u — X (t))dt + 0dB(t)
[10]. This mean-reverting property is illustrated in Figure B. In this
equation:

X (t) denotes the value of the process at time ¢;

w is the long-term mean or the expected equilibrium level;
0 represents the speed of mean reversion;

o is the volatility of the process;

dB(t) denotes a small increment of a Wiener process.

This model consists of two main components:
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1. Deterministic drift term: The term 6(u — X (¢))dt is the drift
component of the model. It drives the process toward the equi-
librium level u. If the instantaneous value X (t) is greater than
1, this component tends to pull it downward; and if it’s less, it
tends to push it upward.

2. Random diffusion term: The term odB(t) is the diffusion
component of the model. It introduces random, unpredictable
fluctuations into the system, stemming from Brownian motion.

The process has the explicit solution
t
X(t) = X(0)e " + pu(1—e ) + aeet/ P dB(s).
0

For t > s, the conditional distribution is Gaussian:

X(t) | X(s) = a5 ~ N (u T (s — e, 21— 6—26(15—5))) ‘

As t — oo, the OU process converges in distribution to the station-
ary Gaussian X (co) ~ N (,u, %) The covariance structure for the
stationary process is Cov(X (s), X (t)) = g—;e_mt_s‘.

The Ornstein—Uhlenbeck process is mean-reverting. We use the ex-
act discrete-time solution for simulation. Consider the SDE equation,
dX(t) = 0(u—X(t)) dt+0 dB(t). The simulation algorithm is as follows:

1. Set X (0) to the initial value;

2. Estimate the long-term mean p, mean-reversion speed 6, and
volatility o;

3. Fori=1,...,N:

o Generate Z; =" N(0,1);

e Update the process using the exact solution

1_6729At

X(t) = X(tim1)e "8 4 (1 — e "3 4 o/ 128 7 7,

Equivalently, according to the above algorithm, OU process is simulated

as
X(t:) = X(tio1)e P8 4 pu(1 — e 92 + U@Jr G

where (; ~ N(0, %(1 — e 20At)) . To estimate the model parameters, an

autoregressive model AR(1) can be used, namely X; = a + bX;_1 + ¢;.

So, we have 0 = —lnA(? and i = 1%17'

3. MODELING AND ANALYSIS

In this study, real market data have been used, and a summary of the
dataset is presented in Table m The data pertain to the stock pri(:@
of Apple Inc, traded under the ticker symbol AAPL on the NASDAQ

stock exchange. The dataset includes columns such as the opening price,

12National Association of Securities Dealers Automated Quotations
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daily high and low prices, closing price, trading volume, and adjusted
closing price.

For all analyses conducted in this study, only the adjusted closing
price was used, as it accounts for dividends and stock splits, thus pro-
viding a more accurate representation of the asset’s value over time. To
better understand the stochastic behavior of stock data, several standard
continuous-time stochastic models have been implemented and analyzed.
For each model, the simulated trajectory is compared with the actual
price path, and the relevant analyses are provided.

TABLE 1. Daily stock prices of AAPL from 2020 to 2024,
including key components: opening price, high and low
prices, closing price, trading volume, and adjusted closing

price.
Date AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
1/2/2020 74.059998 75.15 73.7975 75.08750153 135480400 72.62083435
1/3/2020 74.287498 75.145 74.125 74.35749817 146322800 71.91481018
1/6/2020 73.447502 74.99 73.1875 74.94999695 118387200 72.48784637
1/7/2020 74.959999 75.225 74.37 74.59750366 108872000 72.14691925
1/8/2020 74.290001 76.11 74.29 75.79750061 132079200 73.30751801
12/23/2024 254.77 255.65 253.45 255.2700043 40858800 254.6557159
12/24/2024  255.49001 258.21 255.29 258.2000122 23234700 257.5786743
12/26/2024 258.19 260.1 257.63 259.019989 27237100 258.3966675
12/27/2024  257.82999 258.7 253.06 255.5899963 42355300 254.9749298

3.1. The Geometric Brownian Motion Model. The geometric Brow-
nian motion model is one of the most widely used frameworks for asset
pricing. In this model, the asset price grows stochastically, while also
following an average trend over time.

The results show that the GBM can partially replicate the general
upward trend of the stock price, especially during periods of steady and
moderate market growth. However, in intervals such as the year 2023
when the market experienced sustained and strong bullish momentum
the GBM model failed to fully capture this growth. In those periods,
the simulated path remained below the actual trajectory, indicating the
model’s limitations in reproducing long-term and robust market trends.

Moreover, in episodes marked by abrupt price surges or sudden crashes
such as the drop triggered by the COVID-194 crisis in 2020 the model
proves insufficient, as real market fluctuations are shaped by structures
more complex than those assumed by the GBM. In addition, the model’s
assumption of constant and homogeneous variance over time is incon-
sistent with the inherently dynamic and sometimes unstable nature of
financial markets.

3COronaVIrus Disease 2019
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Comparison of Actual AAPL Price and GBM Simulation 2020-01-02 / 2024-12-30

Price (USD)

Jan 02 2020 Jan 04 2021 Jan 03 2022 Jan 03 2023

F1GURE 4. Comparison of the actual adjusted closing
price path of AAPL (black) and the simulated trajec-
tory from the Geometric Brownian Motion (GBM) model
(blue) over the period 2020-2024.

Figure H presents a comparison between the actual trajectory of AAPL’s
adjusted closing price (black line) and the simulated path generated by
the GBM model (blue line) over the same time interval. The model
parameters growth rate p and volatility ¢ have been estimated from
real data (Refer to Appendix 1). For further understanding, below
we present the R code algorithm given in Appendix 1 in a simpli-
fied form. Time series of observed AAPL adjusted closing prices p =
(p1,p2,--.,PN+1), drift parameter u, volatility o, number of trading
days per year trading days.

1. Determine the time grid:
e N <« length(p) — 1;
o At < 1/trading days;
2. Build the time vector t:
e Construct time vector: ty <+ k- At for k=0,1,..., N;
3. Simulate the Wiener process B(t) (Brownian motion path):
e Initialize Wiener process: B(0) < 0;
e Fori=1to NNV:
— Generate Z; ~ N(0,1);
— Compute increment: AB(i) < VAt - Z;;
— Update: B(t;) + B(ti—1) + AB(i);
4. Set the initial stock price:
e Set initial price: Sy < p1;
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5. Compute the simulated GBM path using the exact solution:
e For k =0to N:
e Compute simulated price:

Sk < So - exp (1 — $0?) -ty +o-Bty));

6. Align simulated path S = (Sy, S1,...,Sy) with the dates of p;
7. Visualize the comparison:

e Plot actual prices in solid black line;

e Overlay simulated prices in dashed blue line;

The comparison between the actual and simulated trajectories reveals
the following:

e Both paths exhibit an overall upward trend, which reflects a
positive p.

e In periods of low volatility, the GBM model accurately tracks
the price path.

e During high-volatility episodes particularly in early 2020, during
the COVID-19 crisis the GBM model either underestimates or
overestimates the magnitude of fluctuations.

Therefore, while the GBM may be suitable for approximating overall
trends, it exhibits limitations in modeling extreme market volatility.

3.2. The Standard Brownian Motion and The Hitting / Exit
Times. To analyze the oscillatory behavior of the cumulative returns of
AAPL stock, an approximate trajectory of a standard Brownian motion
was reconstructed using the daily log-returns from the 2020-2024 period.
The objective of this analysis is to identify two key events: the first
hitting time of a 50% cumulative return threshold, and the exit time
from a predefined fluctuation interval.

For this purpose, a symmetric interval was chosen as (—0.2,0.5), cor-
responding to a 20% drawdown or a 50% gain in cumulative returns.
The bounds of this interval were selected to be wide enough to match
the actual volatility range of AAPL during the period under study, while
also ensuring a sufficiently high probability of exit within the considered
time window so that the statistical analysis remains meaningful.

In the simulation, the Brownian path first hits the upper threshold of
(a = 0.5) around day 200. The corresponding point is marked in green
in the diagram. It is observed that after reaching this level, the path
enters a region of higher volatility (see Figure f, left). Furthermore,
the exit from the interval occurs on March 10, 2020, with a cumulative
return drop of approximately 19%. This event coincides with the onset
of the global COVID-19 crisis and the market’s initial negative reaction
(Figure E, right).

This behavior indicates that even in the absence of any directional
component, a standard Brownian motion model can statistically capture
critical points and stress events in the market. Although the model
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(A) Hitting time (40.5) (B) Exit time (—0.2,0.5)

F1GURE 5. Comparison of stopping-time scenarios

assumes purely random and independent price changes, reconstructing
a Brownian path based on real log-returns of AAPL over a five-year
window naturally reproduces significant events such as reaching the 50%
gain level or exiting the volatility band.

From a statistical standpoint, the occurrence of such events may in-
form the design of stop-loss or take-profit strategies especially for short-
term investors sensitive to market fluctuations. However, the absence of
structural trends in the model reduces its predictive power when facing
large-scale external shocks.

It is also observed that, after reaching critical levels, the path tends
to become more volatile a behavior visible in both charts. This feature
may reflect underlying hidden dynamics in the market.

In conclusion, while the Brownian motion provides a useful frame-
work for analyzing critical thresholds in price fluctuations, it has notable
limitations in capturing structural or behavioral patterns in market dy-
namics.

This type of analysis can be used for early detection of volatility
breakouts and for assessing a stock’s resilience to sharp price shocks (see
Appendix 2 for simulation details). Below we give a simplified version of
the R code algorithm that appears in Appendix 2 to aid understanding.
Time series of AAPL adjusted closing prices p = (p1,p2,...,Pn), lower
boundary a < 0, upper boundary b > 0.

1. Compute daily log-returns: r; < log(pi+1/pe) fort =1,... ,n—1;
2. Construct the discrete Brownian motion path: B(0) < 0, B(k) <
Zleri, fork=1,...,n—1;

Define the time index vector: time < 1,2,...,(n — 1);

4. Identify the first exit time index:

Tindex ¢ min{k > 1| B(k) <a or B(k)>b};

5. If no exit occurs, set Tipngex ¢ 7 — 1 (or handle as infinite);

o
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6. Extract the exit value: B(7T) < B(Tindex);

7. Output:

e Plot of B(k) vs. time (solid blue line);

e Horizontal boundary lines at a and b (dashed red);

e Mark the exit point (Tingex, B(7)) with a filled green circle;
e Label the point with 7 slightly above the point.

3.3. The Hitting Time under The Drifted Brownian Motion.
To investigate the effect of directional price movements, the cumulative
return path was simulated by incorporating a drift component into the
Brownian motion model. Unlike the standard Brownian motion, which
assumes fluctuations centered around zero, the drifted version allows the
trajectory to exhibit a systematic tendency toward growth or decline.
This makes the model more suitable for market conditions characterized
by a clear directional trend.

Drifted Brownian Path with Hitting Level = 0.5

02 04
1

Cumulative Return {log)

00
]

T T T T T T T
0 200 400 600 800 1000 1200

Day

FIGURE 6. Simulated trajectory of a drifted Brownian
motion hitting 40.5 return threshold.

Specifically, the inclusion of a positive drift causes the trajectory to, on
average, move upward over time. As a result, the likelihood of reaching
a given profit threshold increases, and the time to hit that level tends
to decrease.

In this simulation, a return level of 40.5 was set as the threshold, and
the time of the first crossing was computed. The results showed that
the process reached this level on day 1003 from the start of the dataset,
corresponding to September 30, 2022 (see Figure fj and Appendix 3 for
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details). To clarify the implementation, we present a condensed R-code
algorithm adapted from Appendix 3. Time series of AAPL adjusted
closing prices p = (p1, p2, - . ., Pn), Drift parameter p > 0, Target hitting
level a > 0, Number of trading days per year trading days.
1. Compute daily log-returns: r; < log(pi+1/pe) fort =1,... ,n—1;
2. Set time step: At < 1/trading_ days;
3. Construct the “drifted Brownian motion path” B(t): B(0) < 0,
B(ty) %u-tk—l—zleri, for k=1,...,n—1 where t}, = k- At;
4. Define the time index vector: day < 1,2,...,(n — 1);
Initialize: hitting index <— NA, hitting time < NA;
6. Search for the “first hitting time” of level a:

hitting_index «— min{k > 1| B(tx) > a};

o

7. Calculate approximate hitting day:
o If hitting index exists (i.e., not NA): B(hit) <= B(hitting index)
and hitting_time < hitting_ index;
Else: No hitting occurred within the observation period;

8. Output:

e Plot of B(ty) vs. day (solid red line);

e Horizontal line at level a (dashed dark green);

e Title: “Drifted Brownian Path with Hitting Level = a”;

e Console output: “Hitting index: hitting index, Approximate

day: hitting_ time”.
This behavior indicates that when a drift component is present, the
probability of reaching a specified profit level not only increases, but the
trajectory also tends to reach that level more quickly. Such a model can
serve as an effective analytical tool in directional markets, where upward
or downward trends dominate.

3.4. Simulation of The Brownian Bridge and Comparison with
Real Data. In this section, the normalized trajectory of AAPL’s ad-
justed closing price from 2020 to 2024 is compared with a simulated
Brownian bridge. The aim of this comparison is to evaluate the differ-
ence between the behavior of actual prices and a purely random, trend-
less path.

Unlike the standard Brownian motion, which evolves freely beyond
the time interval, the Brownian bridge is constrained to take fixed values
at both endpoints (usually zero) and fluctuates only within the interval.
To enable a meaningful comparison, both paths were normalized to the
interval [0, 1].

In Figure [, the actual price path (blue line) displays asymmetric
and trend-oriented behavior, while the Brownian bridge (red line) ex-
hibits symmetric fluctuations with no directional tendency. This con-
trast suggests that AAPL’s price dynamics are not purely random but
also influenced by structural and market-driven factors. For instance,
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a substantial portion of the company’s shares was concentrated in the
hands of mutual funds. Regulatory constraints combined with antici-
pated tax changes led to large-scale selling, which in turn contributed
to a sharp decline in the stock price []

Comparison of AAPL Stock Price and Brownian Bridge
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FiGURE 7. Comparison between the normalized trajec-
tory of AAPL’s adjusted closing price (blue) and the nor-
malized Brownian bridge (red).

Furthermore, the Brownian bridge is inherently constructed to return
to zero at both the start and end of the interval.

As a result, the simulated Brownian bridge maintains fluctuations
around a stable central value. In contrast, the actual price path not only
deviates from this center but also shows a clear upward trend in several
parts—particularly in the second half of the interval. This asymmetry
and directional bias indicate that models based solely on random noise—
such as the Brownian bridge—are insufficient for fully capturing real
stock market dynamics.

Such discrepancies may reflect the influence of fundamental drivers,
market sentiment, or external interventions, all of which push the price
trajectory away from purely stochastic patterns.

This comparison highlights the combination of noise and structure in
real price behavior and can serve as a foundation for developing more
advanced models (see Appendix 4 for simulation details). For conve-
nience, a simplified R implementation of the algorithm from Appendix 4
is shown below. AAPL adjusted closing prices time series: p1,p2, ..., Pn,
Number of time points: n (length of price vector).
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1. Extract price values into a vector: price_ vector = [p1, pa, ..., Pnl;
2. Define normalization function: For any vector x:

x- min(x)

normalized x=—"—~—2—:
max(x)- min(x)’

3. Normalize the AAPL price path:

price_norm = normalize(price_ vector);

1

4. Set time step: At = :;

5. Simulate standard Brownian motion increments:

e For i = 1 to n: dB(i)random normal, (mean=0, sd= v/At);

6. Build the Brownian motion path B(t): B(0) = 0, B(ty) =
Zle dB(i) for k=1 ton;

7. Create the normalized time vector: time = [0, %, %, R %],

8. Construct the Brownian Bridge: For each k = 0 to n: Bridge(t;) =

B(ty) — timey, x B(final) where B(final) = B(ty);
9. Normalize the Brownian Bridge path:

bridge norm = normalize(Bridge);

10. Plot the comparison:

Blue solid line: price__norm vs. time;

Red solid line: bridge norm vs. time;

X-axis label: “Normalized Time”;

Y-axis label: “Normalized Value”;

Title: “Comparison of AAPL Stock Price and Brownian Bridge”.

3.5. Simulation of The Ornstein—Uhlenbeck Model. To examine
mean-reverting behavior in the time series of AAPL stock, the Ornstein—
Uhlenbeck model was applied to the logarithm of the adjusted closing
prices. The simulated OU path was then compared to the actual price
trajectory over the period from 2020 to 2024. The main objective of
this comparison is to determine whether the OU model can adequately
reflect the long-term dynamics of assets like AAPL stock, which often
exhibit non-cyclical trends and structural changes.

The results show that the OU model generates fluctuations centered
around a long-term mean, such that large deviations tend to diminish
over time. In contrast, the actual price path of AAPL exhibits a clear
long-term upward trend with significantly higher volatility (see Figure

). This upward trend intensifies particularly after day 600, while the
OU model continues to revert to its mean, thus failing to reproduce the
structural shifts observed in the real market.

This comparison demonstrates that while the OU model is useful
for analyzing stability components and simulating noise behavior, it
falls short in capturing directional trends and structural shifts typi-
cal of growing equity prices. (See Appendix 5 for simulation details.)
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Comparison of AAPL Log Price and OU Model
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FiGURE 8. Comparison of the logarithmic adjusted price
trajectory of AAPL (blue) with the simulated Ornstein—
Uhlenbeck (OU) process (red). The real path shows a
long-term upward trend and high volatility, whereas the
OU model exhibits stable, mean-reverting behavior.

For a clearer view of the steps, we include a pared-down R code algo-
rithm taken from Appendix 5. Time series of AAPL log-adjusted prices:
log(p1),log(p2), ... ,log(prn), Mean reversion speed: 6 > 0, Long-term

mean:

u, Volatility: o > 0, Number of time points: n, Time step:

At = ﬁ (assuming 252 trading days per year).

1.

2.
3.
4.

°

5.
6.
°
°

Define the observed log-price vector:

log_price = [log(p1),log(p2), ..., log(pn)];
Set time step: At = %2;
Initialize the simulated OU path X (¢): X (0) = log(p1);
Simulate the OU path using Euler—-Maruyama discretization:
For each ¢ = 2 to n:

X(t:) = X (tio1) +0(u — X (ti1))At + 0 - Z; - VAt

where Z; ~ N(0,1) is a standard normal random variable;
Create the day index vector: day = [1,2,...,n];

Plot the comparison:

Blue solid line: log_ price vs. days;

Red solid line: X (t;) vs. day;

X-axis label: “Day”;
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e Y-axis label: “Log Price”;
e Title: “Comparison of AAPL Log Price and OU Model”.

3.6. Modeling AAPL Stock with The Diffusion Bridges (GBM
and OU). As discussed in the previous sections, the GBM and the OU
process are two fundamental models in financial analysis: the former
being growth-oriented, and the latter characterized by mean-reverting
behavior. In this section, to extend the analysis, we examine the diffu-
sion bridge versions of these models.

For both processes, a bridge is simulated by conditioning on the actual
initial and final prices of AAPL. This framework allows us to evaluate
how well each process can reproduce the observed stock trajectory under
model-consistent constraints.

Actual (norm) vs GBM Diffusion Bridge Actual (norm) vs OU Diffusion Bridge (guided)

p —  Acwal | T E— Actual
GBM bridge —— QU bridge (quided)
GEM bridge (anti) - QU bridge (guided, anti)
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FIiGURE 9. The left panel compares the normalized
AAPL trajectory (blue) with the GBM diffusion bridges:
a standard bridge (orange, solid) and a variance-reduced
version (orange, dashed). The right panel presents the
OU diffusion bridges: a guided bridge (green, solid) and
its variance-reduced counterpart (green, dashed).

Figure B presents the results. The left panel compares the normalized
actual price path of AAPL (blue) with the two GBM diffusion bridges: a
standard bridge (orange, solid) and a variance-reduced bridge (orange,
dashed; implemented via antithetic simulation). Both paths replicate
the long-term upward trend, but the variance-reduced version smooths
out fluctuations, producing a trajectory that remains closer to the em-
pirical data. This highlights the role of variance-reduction techniques
(in particular, the antithetic method) in improving simulation stability.
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The right panel shows the OU diffusion bridges: a guided bridge
(green, solid) and a variance-reduced version (green, dashed; antithetic).
As expected, the OU process tends to revert toward a mean trajectory;
hence, the OU bridges avoid explosive growth, but in most periods over-
estimate the actual price level. Nevertheless, the guided OU bridge
follows the general trend, and during the years 2023-2024 it overshoots
the sharp upward momentum observed in the data.

Overall, the comparison demonstrates that GBM bridges replicate the
growth-oriented nature of AAPL prices more faithfully, while the OU
bridges emphasize mean reversion. In both cases, the use of variance-
reduced bridges (antithetic paths) decreases variability across simula-
tions and improves robustness of the results. These findings suggest
that, for forecasting stock prices, GBM-based bridges are more suitable,
whereas the OU-based bridges are better aligned with assets that display
strong mean-reverting patterns (see Appendix 6 for simulation details).
The following presents a simplified R algorithm (derived from Appen-
dix 6) for easier comprehension. Time series of AAPL adjusted closing
prices: pi1,p2,- .., Pn, Number of trading days per year: 252.

1. Extract and clean price data:

e p < adjusted closing prices,

e dates < corresponding dates;

e Remove any missing values;

2. Compute time parameters: N <—n—1, Ty, < %, At TJ{,T;
3. Set initial and terminal prices: Sy < p1, ST < Dn, ST  Dn;
4. Normalize actual price path for visualization:

pi—min(p)

act = max(p)—min(p)’

1 =1 to n;
5. Estimate GBM parameters from log-returns:
Iry = log(pes1/pt), o =V252-sd(Ir), p =252 mean(Ir) + 0.50%;

6. Simulate GBM Diffusion Bridge (standard and antithetic): For
a given random vector Z ~ N(0,1)":

e Simulate Brownian increments: dB(i) = VAt - Z;, B(t) =
>oi1 dB(i); )

e Construct Brownian bridge: B(ty) = B(ty) — % - B(T);

e Add drift and linear trend to match endpoints:

Arif(ty) = (1~ 30%) tr, lin(ty) = (ESIES 030Ny

e Form bridge path:
GBM__bridge(t;) = exp (log So + drift(tg) + lin(tx) + UB(tk)) ;

e For antithetic version: average with path using —Z7;
7. Estimate OU parameters via linear regression on log prices:
o Let X; =log(py);
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o Fit: Xy11 =a+bX; + ¢

.. logb _ _a_ _ . /__2sVar(e) .
e Then: kK = — AL 0= i_p> OOU = 1—exp(—2kAt)?

8. Simulate OU Diffusion Bridge (standard and antithetic): For a
N,

given random vector Z ~ N(0,1)
e Initialize: X (0) = log So;
e Euler-Maruyama step:

X(tl) = X(ti_l) + I‘L(e - X(ti_l))At + oouV At - ZZ';
e Correct endpoint: X (t.) = X (&) + %’“(log St —X(T));

Exponentiate: OU_ bridge(ty) = exp(X (t));

For antithetic version: average with path using —Z;
Output:

Simulated paths: gbm_ std, gbm_ vr, ou_ std, ou_ vr;
e Visual comparison with normalized actual path act.

e Lo o

4. DiscussioN & CONCLUSIONS

This study implemented and evaluated various classical stochastic cal-
culus models on real stock market data from Apple Inc. (AAPL). The
models included the geometric Brownian motion, the standard Brownian
motion with and without drift, the Brownian bridge, and the OU pro-
cess. Rather than treating these models as abstract mathematical tools,
the analysis focused on how well they capture actual price behavior and
volatility dynamics observed in financial markets.

The findings suggest that each model possesses distinct strengths and
limitations. The GBM model effectively reflects the medium-term up-
ward trend in stock prices but underrepresents extreme volatility and
market shocks. In practice, asset prices may exhibit both upward and
downward abrupt changes. These abrupt movements, often referred to
as jumps in the finance literature, suggest that extending the basic price
model to include jump components can improve its ability to capture
real-world price dynamics.

Introducing a drift term improves the model’s ability to simulate di-
rectional movement and accelerates the path toward predefined thresh-
olds, aligning more closely with observed market behavior during bullish
periods.

The Brownian bridge offered a useful benchmark for distinguishing
between random and structurally driven price behavior, revealing that
AAPL’s price fluctuations are not purely stochastic but also shaped by
directional trends and asymmetries. The OU model, with its inherent
mean-reversion property, was more suitable for capturing stable fluctua-
tions around an equilibrium, yet failed to replicate the persistent growth
trend seen in the actual stock price.

Importantly, this comparative modeling approach demonstrates that
while classical stochastic processes provide powerful tools for stylized



Stochastic modeling of AAPL stock using stochastic differential equation models 25

analysis, they are insufficient when applied in isolation to real-world fi-
nancial time series. Real asset prices are influenced by a mix of noise,
structural shifts, external shocks, and behavioral dynamics that lie be-
yond the scope of basic stochastic assumptions.

Future research could benefit from using models that, beyond gradual
changes, also allow for sudden jumps in prices such as jump-diffusion
switching models that better reflect market behavior under stress.

Incorporating non-Gaussian statistical frameworks would also help
address the heavy tails and extreme deviations observed in real financial
data, which classical models tend to underestimate.

Furthermore, the application of machine learning methods in financial
modeling may open new paths of analysis, enabling deeper insight into
real market dynamics and improving forecasting accuracy. These ad-
vancements could contribute to the development of more realistic models
and support better-informed decision-making in finance and investment.
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APPENDICES

In this section, we provide the R codes used throughout the analysis
presented in the paper. Each appendix contains a specific simulation
relevant to the models and results discussed in the main text.

Appendix 1. Simulation of the Geometric Brownian Motion
Model for AAPL Stock. This code simulates a geometric Brownian
motion path based on actual AAPL stock data, and compares it with
the real price trajectory.

N <- length(prices) - 1

dt <- 1 / trading_days

W <- c(0, cumsum(rnorm(N, 0, sqrt(dt))))

SO <- as.numeric(prices[1])

t <- seq(0, N * dt, by = dt)

S_sim <- S0 * exp((mu - 0.5 * sigma™2) * t + sigma * W)
sim_xts <- xts::xts(S_sim, order.by = index(prices))
plot(prices, col = "black", lwd = 2,

main = "Comparison of Actual AAPL Price and GBM Simulation",
xlab = "Date", ylab = "Price (USD)")

lines(sim_xts, col = "blue", lwd = 2, 1ty = 2)
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Appendix 2. Hitting and Exit Analysis in the Standard Brow-
nian Motion (No Drift). In the first part of the code below, we com-
pute the first time the cumulative log-return process exits the interval,
estimated from AAPL data. This band reflects typical price fluctuations
over 2020-2024.

log_returns <- diff(log(adj_prices))

W <- cumsum(na.omit(log_returns))

a <- -0.2

b <- 0.5

tau_index <- which(W < a | W > b)[1]
tau_value <- W[tau_index]

time_num <- 1:length(W)

tau_label <- expression(tau)
plot(time_num, as.numeric(W), type = "1", col = "blue", lwd =
2,

main = "W(t) and First Exit Time",

xlab = "Day Index", ylab = "W(t)")
abline(h = c(a, b), col = "red", 1ty = 2)

points(time_num[tau_index], tau_value, col = "darkgreen", pch
=19, cex = 2)

text (time_num[tau_index], tau_value + 0.05, labels =
"tau_label", col = "darkgreen", cex = 1.2)

Now, we calculate the first time W (t) reaches a profit level of o = 0.5.
This helps identify the earliest time point at which the asset achieves a
50% gain based on real AAPL stock data.

time <- 1:length(cumulative_returns)

alpha <- 0.5

T_alpha_index <- which(cumulative_returns >= alpha) [1]
T_alpha <- time[T_alpha_index]

plot(time, cumulative_returns, type = "1", col = "blue", lwd
=2,

main = "W(t) and Hitting Time at \alpha = 0.5",

xlab = "Day Index", ylab = "W(t)")

abline(h = alpha, col = "red", lty = 2)

points(T_alpha, cumulative_returns[T_alpha_index], col =
"darkgreen")

Appendix 3. Simulation of Hitting Time under the Drifted
Brownian Motion. Based on the previous section, this code adds a
drift component to the cumulative log-return process and calculates the
first hitting time of the 0.5 level.
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hitting_index <- NA

hitting_time <- NA

plot(xproc, type = "1", col = "red", lwd = 2,

xlab = "Day", ylab = "Cumulative Return (log)",

main = paste("Drifted Brownian Path with Hitting Level =",
a))

abline(h = a, col = "darkgreen", 1ty = 2)

cat("Hitting index:", hitting_index, ", Approximate day:",
hitting_time, "\n")

Appendix 4. Simulation of the Brownian Bridge. This section
simulates a Brownian Bridge and compares it with the normalized ad-

justed price path of AAPL.

price_vector <- as.numeric(Ad(AAPL))
normalize <- function(x) {

(x - min(x)) / (max(x) - min(x))

}

price_norm <- normalize(price_vector)
n <- length(price_vector) - 1

time <- seq(0, 1, length.out = n + 1)
dt <-1/n

dW <- rnorm(n, mean = 0, sd = sqrt(dt))
W <- c(0, cumsum(dw))

bridge <- W - time * W[length(W)]
bridge_norm <- normalize(bridge)
plot(time, price_norm, type = "1", col = "blue", lwd = 2,

xlab = "Normalized Time", ylab = "Normalized Value",
main = "Comparison of AAPL Stock Price and Brownian Bridge")
lines(time, bridge_norm, col = "red", lwd = 2)

Appendix 5. Simulation of the Ornstein—Uhlenbeck Model
for AAPL Log Prices. This code compares the log-adjusted prices
of AAPL with a simulated OU process to assess mean-reverting behav-

ior.

X[1] <- log_pricel[1]

for (i in 2:n) {

X[i] <- X[i - 1] + theta * (mu - X[i - 1]) * dt + sigma *
rnorm(1, 0, sqrt(dt))

}

plot(log_price, type = "1", col = "blue", lwd = 2,

main = "Comparison of AAPL Log Price and 0U Model",

xlab = "Day", ylab = "Log Price")

lines(X, col = "red", lwd = 2)
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Appendix 6. Simulation of the Diffusion Bridges (GBM and
OU) for AAPL Stock. This appendix provides the cleaned and uni-

fied R code for simulating diffusion bridges:

e GBM bridge with drift and endpoint-alignment;
e OU diffusion bridge using affine correction.

p <~ na.omit(Ad(AAPL)); dates <- index(p)

N <- NROW(p)-1; Tyr <- N/252; dt <- Tyr/N

SO <- as.numeric(first(p)); ST <- as.numeric(last(p))
norm <- function(x){r<-range(x);(x-r[1]1)/(r[2]-r[1]1)}

act <- norm(as.numeric(p))

1lr <- diff(log(p)); sig <- sd(1lr)*sqrt(252)

mu <- mean(lr)*252+0.5xsig"2

gbm_bridge <- function(S0,ST,mu,sig,T,N,antithetic=FALSE){
dt<-T/N; t<-seq(0,T,length.out=N+1)

20<-10g(80) ; zT<-1log(ST)
make<-function(Z){B<-c (0, cumsum(sqrt(dt)*Z))
B<-B-(t/T)*B[length(B)]

drift<-(mu-0.5*%sig~2)*t
1in<-((zT-z0) - (mu-0.5%sig ~2) *T) *(t/T)
exp(zO+drift+lin+sig*B)}

Z<-rnorm(N); if (!antithetic) make(Z) else

0.5* (make (Z) +make (-Z))

}

gbm_std<-gbm_bridge (S0,S8T,mu,sig,Tyr,N);
gbm_vr<-gbm_bridge(S0,ST,mu,sig,Tyr,N,TRUE)
X<-as.numeric(log(p)); fit<-1m(X[-1]~X[-length(X)]1)
b<-coef (fit) [2]; a<-coef(fit) [1]; kap<--log(b)/dt;
th<-a/(1-b)

resv<-var(resid(fit)); sig_o<-sqrt(2*kap*resv/
(1-exp(-2xkap*dt)))
ou_bridge<-function(x0,xT,kap,th,sig,T,N,antithetic=FALSE){
dt<-T/N;t<-seq(0,T,length.out=N+1)
step<-function(Z){X<-numeric(N+1);X[1]<-x0

for(i in 1:N) X[i+1]<-X[i]+kap*(th-X[i])*dt+sig*sqrt(dt)*Z[i]
X+(t/T)* (xT-X[N+1]1) }

Z<-rnorm(N) ;out<-if (lantithetic) step(Z) else
0.5%(step(Z)+step(-2))

exp(out)}

ou_std<-ou_bridge(log(80),1log(ST) ,kap,th,sig_o,Tyr,N)
ou_vr <-ou_bridge(log(S0),log(ST) ,kap,th,sig_o,Tyr,N,TRUE)
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