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1. Introduction

Berge first introduced the new notion of hypergraph in 1960. Since
hypergraphs are extensions of graphs, they are a useful and efficient
tool for analyzing graph structure and extending classical graph results,
which have applications in all branches of science, such as medicine
and hypernetworks [12, 13, 14, 15, 16]. Research shows that hyper-
graphs play a prominent role in computer science, especially machine
learning and relational databases. Documentation on the use of hyper-
graphs in social networks, web information systems, document-centered
information processing, information systems is available in these sources
[2, 5, 6, 7, 10, 11]. Symbolic logic was first introduced in 1847 by the
English mathematician George Boole. In his research work, he intro-
duced Boolean algebra, which is a combination of classical logic and
algebra, which is now called modern algebra (complete distribution lat-
tice). The language designed by Boole is used to determine the truth
or falsehood of logical expressions using variables and symbols. We rep-
resent the Boolean operators or, and, not with the symbols +, ∗,− and
the true and false expressions with variables. Boolean algebra usages
1 and 0 to show the truth and falsehood of a statement, instead of T
and f in truth tables. Logical computations are expressed by a func-
tion called a Boolean function to represent the relationship between a
Boolean input and a Boolean output. This function plays an important
role in the building of digital computer circuits and chips for cryptog-
raphy, especially in the design of symmetric key algorithms. In 1937,
Claude Shannon used Boolean algebra for electronic switching circuits,
and by the 1950s it had become a standard part of the electronic project
[4].

In the present essay, we inset the new meaning of hypergraphable
Boolean function and Boolean functionable hypergraph for any certain
T.B.T. We also create a hyperdiagram of each Boolean function, and
check the qualifications under which a hypergraph is according to a
specified Boolean function. In fact, for every desired hypergraph, we
derive a Boolean function called a Boolean functional hypergraph. We
show that any hypergraph is a Boolean functional hypergraph. A normal
question arises, is there a Boolean expression for each specific T.B.T?
The principal motive of the authors of the article is the elicitation of
an irreducible switching phrase of each T.B.T. Thus we introduce the
concepts of hypergraph based on Boolean functions and unitors sets.
Finally, we use the aforementioned notions to demonstrate that any
T.B.T corresponds to a minimum Boolean phrase through the set of
unitors and provide qualifications in T.B.T to gain the minimum irre-
ducible Boolean phrase from the switching functions. The output of
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this paper is a new method to extract binary decision (hyper)diagrams
and binary decision (hyper)trees via the notion of Boolean functionable
hypergraphs and hypergraphable Boolean functions.

2. Preliminaries

In the present section, we remind the definitions and outcomes that
we require further.

Suppose X be an optional collection. Thus we show P ∗(X) = P (X)∖
∅, wherever P (X) is the poset of X.

Definition 2.1. [2] Let G = {a1, a2, . . . , an} be a finite set. A hyper-
graph on G is a pair H = (G, {Ei}

m

i=1) such that for all 1 ≤ i ≤ m,

∅ ̸= Ei ⊆ G and
m∪
i=1

Ei = G. The elements ai of G are called hyper-

vertices and the sets Ei are called the (hyperedges) of the hypergraph
H.

Definition 2.2. [5] Let G = {a1, a2, . . . , an} be a finite set. A hyper-
diagram on G is a pair H = (G, {Ek}

m

k=1) such that for all 1 ≤ k ≤ m,
Ek ⊆ G and |Ek| ≥ 1. Clearly every hypergraph is a hyperdiagram,
while the converse is not necessarily true. We say that two hyperdia-
grams H = (G, {Ek}

m

k=1) and H ′ = (G′, {E′
k}

m′

k=1) are isomorphic if
m = m′ and there exists a bijection γ : G → G′ and a permutation
τ : {1, 2, . . . ,m} → {1, 2, . . . ,m′} such that for all a, b ∈ G, if for some
1 ≤ i ≤ m, a, b ∈ Ei, then γ(a), γ(b) ∈ Eτ(i), if for all 1 ≤ i ≤ m,
a, b ̸∈ Ei, then γ(a), γ(b) ̸∈ Eτ(i) and if for some 1 ≤ i ≤ m, a ∈ Ei, for
all 1 ≤ j ≤ m, b ̸∈ Ej , then γ(a) ∈ Eτ(i) and γ(b) ̸∈ Ej . Since every
hypergraph is a hyperdiagram, define an isomorphic hypergraphs in a
similar a way.

Definition 2.3. [3] A binary decision tree (BDT) for the variable order
xi1 < xi2 < . . . < xin satisfying the following conditions: (1) all leaves
are labeled by 0 or by 1, (2) all other nodes are labeled by a variable
and have exactly two children, the 0-child and the 1-child. The edges
leading to these children are labeled by 0 respectively by 1, (3) if the
root is not leave, then it is labeled by xi1 , (4) if a node is labeled by xin
then, its two children are leaves, (5) if a node is labeled by xij and j < n,
then its two children are labeled by xij+1 . Every path of a decision tree
determines an assignment of the variables xi1 , xi2 , . . . , xin . The Boolean
function f(x1, x2, . . . , xn) represented by a decision tree T is defined by
as f(x1, x2, . . . , xn) = label of the leaf reached by the path corresponding
to the assignment xi1 , xi2 , . . . , xin .
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Definition 2.4. [3] A binary decision diagram (BDD) for a given vari-
able order is an acyclic directed graph satisfying the following properties:
(1) there is exactly one node without predecessors (the root) ,(2) there
is one or two nodes without successors, labeled by 0 or 1 (if there are
two then they carry different labels), (3) all other nodes are labeled by
a variable and have exactly two distinct children, the 0-child and the
1-child, (the edges leading to these children are labeled by 0 respectively
by 1), (4) a child of a node is labeled by 0, by 1, or by a variable larger
than the label of its parent w.r.t. the variable order, (5) all descendant-
closed subgraphs of the graph are non-isomorphic. A binary decision
diagram (BDD) is a compact representation of a binary decision tree,
which obtained from a decision tree through repeated application of two
compression rules

(i) Sharing of identical subtrees.
(ii) Elimination of nodes for which the 0-child and the 1-child coin-

cide (redundant nodes).
The rules are applied until all subtrees are different and there are no
redundant nodes.

Theorem 2.5. [9] Each T.B.T it matches to a least Boolean phrase.

Definition 2.6. [9] Let n ∈ N and C(φ, a1, a2, . . . , an) be a T.B.T. Then
∀1 ≤ j ≤ 2n describeKernel(φj) = {(a1, a2, . . . , an) | φj(a1, a2, . . . , an) =
0} and will mark via Ker(φj), in a analogous method Kernel(φ) is de-
scribed and it is marked by Ker(φ).

Definition 2.7. [9] Let n ∈ N,m ∈ N∗, 1 ≤ k ≤ n and
C(φ(0), . . . , φ(m), a1, . . . , an) be a T.B.T, which for each 0 ≤ t ≤ m,

φ(t)(a1, . . . , an) =

2n∏
i=1

φ
(t)
i (a1, a2, . . . , an). Then

(i) Z(n, φ(t), 0) = {j | φ(t)
j (a1, a2, . . . , an) = 0, where 1 ≤ j ≤ 2n};

(ii) S(k, a1, a2, . . . , ak, 0) = {
n∑

i=1

ai |
k∑

i=1

ai +
n∑

i=k+1

ai = 0}.

Theorem 2.8. [9] Let n ∈ N, 1 ≤ j ≤ 2n and C(φ, ϕ, a1, a2, . . . , an) be
a T.B.T. Then

(i) Ker(ϕ) = Ker(φ) if and only if φ ∼ ϕ;
(ii) If Ker(φ) ⊆ Ker(ϕ), then (φ+ ϕ) ∼ φ;
(iii) If Ker(ϕ) ⊆ Ker(φ), then (φ.ϕ) ∼ φ;
(iv) Z(n, φ.ϕ, 0) = Z(n, φ, 0) if and only if (φ.ϕ) ∼ φ;
(v) Z(n, ϕ, 0) = Z(n, φ, 0) and Ker(ϕ) ⊆ Ker(φ) it implies that

ϕ ∼ φ.
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Table 1. T. B. T with n variables C(φ(0), φ(1), . . . , φ(m), a1, . . . , an)

a1 a2 … an φ(0)(a1, . . . , an) φ(1)(a1, . . . , an) … φ(m)(a1, . . . , an)

0 0 … 0 φ
(0)
1 (a1, . . . , an) φ

(1)
1 (a1, . . . , an) … φ

(m)
1 (a1, . . . , an)

0 0 … 1 φ
(0)
2 (a1, . . . , an) φ

(1)
2 (a1, . . . , an) … φ

(m)
2 (a1, . . . , an)

...
...

...
...

...
...

...
0 0 … 1 φ

(0)
2n−1(a1, . . . , an) φ

(1)
2n−1(a1, . . . , an) … φ

(m)
2n−1(a1, . . . , an)

1 1 … 1 φ
(0)
2n (a1, . . . , an) φ

(1)
2n (a1, . . . , an) … φ

(m)
2n (a1, . . . , an)

3. Switching Hypergraph

In this part, we use T.B.T on Boolean variables and present the con-
ception of binary decision hypertree(hyperdiagram) applying the notions
of hypergraphable Boolean functions and Boolean functionable hyper-
graphs and peruse several of their attributes.

We assume each Boolean function φ : An → A = {0, 1} by

φ(a1, a2, . . . , an) =

m∏
j=1

kj∑
i=1

ai, wherever for every 1 ≤ i ≤ n, ai is a

literal and m, j, kj ∈ N. Assume n ∈ N,m ∈ N∗, a1, a2, . . . , an be
optional Boolean variables and for every 0 ≤ j ≤ m,φ(m)(a1, . . . , an)
be Boolean functions. We will define a table T.B.T on Boolean vari-
ables a1, a2, . . . , an via a collection C(φ(0), φ(1), . . . , φ(m), a1, . . . , an) =

{φ(0), φ(1), . . . , φ(m), (a1, . . . , an)}, where ∀0 ≤ j ≤ m, φ(m)(a1, . . . , an),
are Boolean functions and form = 0, we will denote it by C(φ, a1, . . . , an).
Describe a binary operation “+” on C(φ,ψ, a1, . . . , an) by

(φ+ ψ)(a1, . . . , an) = φ(a1, . . . , an) + ψ(a1, . . . , an)

a binary operation “.” on C(φ,ψ, a1, . . . , an) by

(φ.ψ)(a1, . . . , an) = φ(a1, . . . , an).ψ(a1, . . . , an)

and a unary operation

c : C(φ,ψ, a1, . . . , an) → C(φ,ψ, a1, . . . , an) by c(ai) = 1− ai

and c(φ(a1, . . . , an)) = 1 − φ(a1, . . . , an). Describe a connection ∼ on
a T.B.T C(φ,ψ, a1, . . . , an) by φ ∼ ψ if for every (a1, . . . , an) ∈ An,
we have φ(a1, . . . , an) = ψ(a1, . . . , an)(φ ≡ ψ). It is obvious that ∼
is a congruence equivalence connection at C(φ,ψ, a1, . . . , an). For all
0 ≤ j, j′ ≤ m, we tell that C(φ(j), a1, . . . , an) and C′(φ(j′), a1, . . . , an) are
equivalent, if φ(j) ∼ φ(j′).
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With Theorem 2.5, Hamidi, et al. demonstrated that ∀n ∈ N and
C(φ, a1, . . . , an), there is a least Boolean phrase ψ(a1, . . . , an) in a man-
ner that φ ∼ ψ. At present, we possess the appendix definition.

Definition 3.1. Let C(φ ̸≡ 0, a1, . . . , an) be a T.B.T. If ψ(a1, . . . , an) =
m∏
j=1

kj∑
i=1

ai be the relevant least Boolean phrase so that φ ∼ ψ. If ∀ 1 ≤

j ≤ m, at ∈
kj∑
i=1

ai, thus presume at like root vertex has two subtrees,

one in which at = 0 and one in which at = 1. Now each of the two
subtrees hits another variable, each of the two variables hits the other
two subtrees, and in the same way. The leaves have 0 because the output
of the function is in the paths that are from the root to the tabs. We
call the acyclic directed graph created in the mentioned qualifications as
a binary decision tree and represent by 0-BDHT . If we subjoin vertex
1 to the last leaf as a symmetrical subtree for the available subtree, we
get an acyclic-directed graph marked via (0⋉ 1)-BDHT .

Example 3.2. Suppose A = {x, y, z, x′, y′, z′} and consider a T.B.T,
C(φ, x, y, z) in Table 2.

x y z φ(x, y, z)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 2. T. B. T C(φ, x, y, z)

We achieve an undirected hypergraph A′ = (A,E1, E2, E3, E4), where
E1 = {x, y′, z}, E2 = {x, y′, z′}, E3 = {x′, y, z} and E4 = {x′, y, z′}.
Since E1∩E2 = {x, y′}, E1∩E3 = {z}, E1∩E4 = ∅, E2∩E3 = ∅, E2∩E4 =
{z′} and E3 ∩ E4 = {x′, y}. We get that minimum Boolean expression
ψ(x, y, z) = (x+ y′)(x′+ y). Thus the 0-BDHT and (0⋉ 1)-BDHT are
obtained in Figures 1 and 2.



36 Marzieh Rahmati, Mohammad Hamidi and Seyyed Ali Mohammadiyeh

 

 

 

 

 

 

                                                                        

 

 

 

 

X 

y 

0 

y 

0 

Figure 1. 0-BDHT

 

 

 

 

 

 

                                                                        

 

 

 

 

X 

y 

0 1 

y 

1 0 

Figure 2. (0⋉ 1)-
BDHT .

In the below Theorem, we demonstrate that each T.B.T compliant to
a binary decision hypertree.

Theorem 3.3. Suppose C(φ ̸≡ 0, a1, . . . , an) be a T.B.T . Then (0⋉ 1)-
BDHT is compliant to T.B.T .

Proof. It is obvious via Theorem 2.5. �
After this, for every T.B.T, C(φ ̸≡ 0, a1, . . . , an), we will display

the BDHT of C(φ ̸≡ 0, a1, . . . , an) by BDHT (C(φ ̸≡ 0, a1, . . . , an))
or BDHT (C(φ)) = (V,E,−→, 99K), wherever −→ is a strong directed
line and 99K is dotted directed line in its graph. for every two certain
vertices a, b in digraph BDHT (C(φ)) = (V,E,→, 99K), we will display
(a→ b) or (a 99K b) via edges of digraph BDHT (C(φ)) = (V,E,→, 99K)
and will tall that are neighbor vertices if, (a→ b) or (a 99K b). The be-
low lemma is a useful gadget for the calculations of our method, which
we demonstrate as follows.

Lemma 3.4. Assume φ1, φ2, . . . , φn be Boolean functions. Thus
(i) (φ1.φ2) ∼

(
φ1.(c(φ1) + φ2)

)
.

(ii) (φ1.φ2. . . . .φn) ∼
(
φ1.(c(φ1) + φ2. . . . .φn)

)
.

Proof. (i)

(φ1.φ2)(a1, . . . , an) = 1.1 = 1, then (φ1.(c(φ1) + φ2))(a1, . . . , an)

= 1.(0 + 1) = 1.

(φ1.φ2)(a1, . . . , an) = 1.0 = 0, then (φ1.(c(φ1) + φ2))(a1, . . . , an)

= 1.(0 + 0) = 0.

(φ1.φ2)(a1, . . . , an) = 0.1 = 0, then (φ1.(c(φ1) + φ2))(a1, . . . , an)

= 0.(1 + 1) = 0.

(φ1.φ2)(a1, . . . , an) = 0.0 = 0, then (φ1.(c(φ1) + φ2))(a1, . . . , an)

= 0.(1 + 0) = 0.
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(ii) Via item (i) and induction on n is get:
(φ1.φ2. . . . .φl.φ(l+1))

∼
(
φ1.(c(φ1) + φ2. . . . .φl).φ(l+1)

)
∼

(
φ1.(c(φ1) + φ2. . . . .φl).(c(φ1) + φ(l+1))

)
∼

(
φ1.(c(φ1) + c(φ1)(φ2. . . . .φl + φ(l+1)) + φ2. . . . .φl.φ(l+1))

)
∼

(
φ1.(c(φ1)(1 + φ2. . . . .φl + φ(l+1)) + φ2. . . . .φl.φ(l+1))

)
∼

(
φ1.(c(φ1) + φ2. . . . .φl.φ(l+1))

)
.

�

Example 3.5. Consider a T.B.T, C(φ, x, y, z) as shown in Table 3.

x y z φ(x, y, z)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 3. T. B. T C(φ, x, y, z)

Suppose A = {x, y, z, x′, y′, z′}. Consider the undirected hypergraph
A′ = (A,E1, E2, E3, E4) in Figure 3, where

E1 = {x, y, z′}, E2 = {x, y′, z}, E3 = {x′, y, z} andE4 = {x′, y, z′}.

Since E1∩E2 = {x}, E1∩E3 = {y}, E1∩E4 = {y, z′}, E2∩E3 = {z}, E2∩
E4 = ∅ and E3∩E4 = {x′, y}, we get that minimum Boolean expression
ψ(x, y, z) = (x′ + y)(x + y′ + z)(y + z′). Because the binary decision
hypertree is not drawable, by Lemma 3.4 (i), we obtain ψ(x, y, z) =
(x′ + y)(x+ y′ + z)(x+ y + z′). Thus the 0-BDHT and (0⋉ 1)-BDHT
or BDHT are obtained in Figures 4 and 5.

Figure
3. Hypergraph
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4. 0-
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5. BDHT
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Definition 3.6. Let C(φ ̸≡ 0, a1, . . . , an) be a T.B.T andBDHT (C(φ)) =
(V,E,→, 99K), be a binary decision hypertree of C(φ ̸≡ 0, a1, . . . , an).
We remove the last level that outputs 0, 1, replace the two nodes as 0, 1,
and drain a tree such that all subtrees participate 0, 1. We will tell as
a binary decision hyperdiagram and will mark via BDHD. If eliminate
0 node in last level(output), will denote by 1-BDHD and eliminate 1
node in last level(output), will denote by 0-BDHD.

Example 3.7. Observe a T.B.T, C(φ, x, y, z) in Table 3. The 0-BDHD
and BDHD are obtained in Figures 6 and 7.

 

 

 

 

 

 

                                                                        

 

 

 

 

 

x 

y 

z z 

y 

0 

Figure
6. 0-
BDHD
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Figure
7.
BDHD

Theorem 3.8. Suppose C(φ ̸≡ 0, a1, . . . , an) be a T.B.T . Then

(i) 0-BDHD is constructed from 1-BDHD;
(ii) 1-BDHD is constructed from 0-BDHD.

Proof. (i) If we have 1-BDHD because each vertex has two subtrees,
for vertices that have only one subtree, we draw the other subtree and
end it with 0 node. In this case, we have BDHD, which by eliminating
1 node in last level(output), 0-BDHD is obtained.
(ii) Unlike the previous case, if we have 0-BDHD because each vertex
has two subtrees, for vertices that have only one subtree, we draw the
other subtree and end it with 1 node. In this case, we have BDHD,
which by eliminating 0 node in last level(output), 1-BDHD is obtained.

�

Theorem 3.9. Suppose C(φ ̸≡ 0, a1, . . . , an) be a T.B.T . Then BDHD
is isomorphic to BDD.
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Proof. Let C(φ ̸≡ 0, a1, . . . , an) be a T.B.T and ψ(a1, . . . , an) =
m∏
j=1

kj∑
i=1

ai

be the relevant minimum Boolean phrase so that φ ∼ ψ. We are in-
formed that BDHD is the binary decision hyperdiagram correspond-
ing to the Boolean phrase ψ and BDD is the binary decision dia-
gram corresponding to the Boolean expression φ. As regards φ ∼ ψ,
∀1 ≤ j ≤ 2n, φj(a1, . . . , an) = ψj(a1, . . . , an). Right now describe a bi-
jection γ : V → V ′ by γ(ai) = ai and ∀1 ≤ i ≤ m,E′

i = γ(Ei). obviously
if two nodes a, b are adjacent nodes in V , then γ(a), γ(b) are adjacent in
V ′, we obtain BDHD ∼= BDD. �

Corollary 3.10. Assume C(φ ̸≡ 0, a1, . . . , an) be a T.B.T. Then we
attain the below chart HT in Figure 8.

Proof. According to Definition 3.6, each BDHD is constructed from
BDHT , and each 0-BDHD is constructed from 0-BDHT . Hence by
Theorem 3.9, BDHD ∼= BDD. �

 

0-BDHT 

0-BDHD 

BDHT 

BDHD 

BDD 

Figure 8. Tree chart HT of C(φ ̸≡ 0, a1, . . . , an)

In Algorithm 1, the way of making a Boolean expression from a T.B.T
based on [9] is described.
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Algorithm 1: Start:
1. Enter a T.B.T C(φ, a1, . . . , an).
2. If φ ≡ 0 or φ ≡ 1, then put ψ ≡ 0 or ψ ≡ 1, In orderly.
3. If ∃j ∈ {1 ≤ j1, j2, . . . , js ≤ 2n}, so that φj(a1, . . . , an) = 0, then

put Ej = {a1, a2, . . . , an |
n∑

j=1

aj = φj(a1, . . . , an) = 0}.

Regarding stage 3, note below:

4. ∀1 ≤ i ̸= j ≤ k and k ∈ N, put φij = Ei ∩ Ej .
5. If ∀1 ≤ i ̸= j ≤ k, φij = ∅ or |φij | < n− 1, then put ψ(a1, . . . , an) =

∏
1≤i≤k

∑
α∈Ei

α.

6. If ∃1 ≤ r ≤ k, and i ̸= j ∈ {i1, i2, . . . , ir} so that φij ̸= ∅ and
|φij | ≥ n− 1, then place ψij(a1, . . . , an) =

∑
α∈fij

α.

7. If Z(n,
∏

i1≤i≤ir
i1≤j≤is

ψij , 0) = Z(n, φ, 0), then place ψ(a1, . . . , an) =

∏
i1≤i≤ir
i1≤j≤is

ψij(a1, . . . , an) that Ker(ψij) ⊆ Ker(φ).

8. If Z(n,
∏

i1≤i≤ir
i1≤j≤is

ψij , 0) < Z(n, φ, 0), then consider 1 ≤ s ≤ k, j ∈ {j1, j2, . . . , js},

φj(a1, . . . , an) =
∑
β∈Ej

β as Ker(
∏

i1≤i≤ir
i1≤j≤is

ψij) ̸= Ker(φj) ⊆ Ker(φ) and

Z(n, (
∏

i1≤i≤ir
i1≤j≤is

ψij).(

js∏
j=j1

φj), 0) = Z(n, φ, 0).

End.

Definition 3.11. Let n ∈ N and C(φ,ψ, a1, . . . , an) be a T.B.T. We
tell that BDD(C(φ)) = (V,E,→, 99K) is isomorphic to BDD(C(ψ)) =
(V ′, E′,→, 99K), if there is a bijection γ : V → V ′ so that if two nodes
a, b are adjacent nodes in BDD(C(φ)), then γ(a), γ(b) are adjacent in

BDD(C(ψ)),
−−−−→
γ(a, b) or

99K
(γ(a), γ(b)) are.

Theorem 3.12. Assume n ∈ N and C(φ,ψ, a1, . . . , an) is a T.B.T. Then
(i) if φ ∼ ψ, then BDD(C(φ)) ∼= BDD(C(ψ));
(ii) if φ ∼ ψ, then BDT (C(φ)) ∼= BDT (C(ψ)).

Proof. (i) Because φ ∼ ψ, ∀1 ≤ j ≤ 2, φj(a1, . . . , an) = ψj(a1, . . . , an).
Now describe a bijection γ : V → V ′ by γ(xi) = xi and ∀1 ≤
i ≤ m, E′

i = γ(Ei). Obviously if two nodes x, y are adjacent
nodes in V , then γ(x), γ(y) are adjacent nodes in V ′, we gain
that BDD(C(φ)) ∼= BDD(C(ψ)).

(ii) It is alike to the case (i).
�
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Based on the Theorem 3.12 and Theorem 2.8, we catch the below
corollary.

Corollary 3.13. Let C(φ,φ′, a1, . . . , an) be a T.B.T.

(i) If Ker(φ′) = Ker(φ), then BDD(C(φ)) ∼= BDD(C(φ′));
(ii) If Ker(φ) ⊆ Ker(φ′), then BDD(C(φ+ φ′)) ∼= BDD(T (φ));
(iii) If Ker(φ′) ⊆ Ker(φ), then BDD(C(φ.φ′)) ∼= BDD(T (φ));
(iv) If Z(n, φ.φ′, 1) = Z(n, φ, 1), then BDD(C(φ.φ′)) ∼= BDD(T (φ));
(v) If Ker(φ′) ⊆ Ker(φ) and Z(n, φ′, 1) = Z(n, φ, 1) imply that

BDD(C(φ)) ∼= BDD(C(φ′)).
We are demonstrated that for each T.B.T , there exists a minimum

Boolean phrase distinct of its c.n.f . Currently, use Theorem 2.5 and
gain the below theorem.

Theorem 3.14. Suppose n ∈ N and C(φ, a1, . . . , an) be a T.B.T. There
exists minimum Boolean phrase in distinct with to its c.n.f as ψ(a1, . . . , an)
so that BDD(C(φ)) ∼= BDD(C(ψ)).

Proof. Suppose n ∈ N and C(φ, a1, . . . , an) be a T.B.T. According to
Theorem 2.5, there is a minimum Boolean phrase ψ(a1, . . . , an) so that
φ ∼ ψ. By Theorem 3.12, we obtain BDT (C(φ)) ∼= BDT (C(ψ)) and
therefore BDD(C(φ)) ∼= BDD(C(ψ)). �

Corollary 3.15. Let n,m ∈ N and C(φ(0), φ(1), . . . , φ(m), (a1, . . . , an))

be a T.B.T. Then BDD(C(C(φ(0), φ(1), . . . , φ(m), (a1, . . . , an))) is re-
ceived with Algorithm 2.

Algorithm 2, Start:
1. Enter a T.B.T C(φ, a1, . . . , an).

2. Catch the Boolean phrase ψ(a1, . . . , an) =
m∏
j=1

ψj from Algorithm 1.

3. If there is 1 ≤ i ≤ n, so that ai ∈
m∩
j=1

ψj , then Put ai =: a1 with the title the root node, otherwise

( there is no 1 ≤ i ≤ n, so that ai ∈
∩
j

ψj) go to stage 6.

4. Consider for a1, leading dashed line are tagged via 0 and for a′1, leading solid line are tagged via 1.
5. ∀2 ≤ i ≤ n, place ai as the subsequent nodes, and for ai, the leading dashed lines are tagged via 0,
and for a′i, leading solid lines are tagged via 1.

6. According to Lemma 3.4, put τ(a1, . . . , an) =
m′∏
j=1

τj = ψ1.(ψ
′
1 + ψ2 . . . ψm), where m ≤ m′

so there exists 1 ≤ i ≤ n, so that xi ∈
m′∩
j=1

τj and go to stage 3.

End.
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4. Accessible Binary Decision Diagram

In the present part, we render a Python programming to access binary
decision hypertree for every certain T.B.T, according to Algorithm 2.

1 import x l rd
2
3 shee t = x l rd . open_workbook ( ” input . x l sx ” ) . sheet_by_index (0 )
4
5 element_names = shee t . row_values ( 0 ) [ : − 1 ]
6 e lements = [ ]
7 for i in range (1 , shee t . nrows ) :
8 e lements . append ( shee t . row_values ( i ) )
9

10 i f len ( e lements ) != pow(2 , len ( element_names ) ) :
11 print ( ” Error in input f i l e , rows count i s n ’ t equal to 2^n . ” )
12 e x i t (0 )
13
14 E_i = [ ]
15 for i , elm in enumerate( e lements ) :
16 i f ( elm [ −1] == 1 ) : # check i f f i s equa l to 1
17 E = [ ]
18 for c in range (0 , len ( elm ) −1):
19 i f ( elm [ c ] == 1 ) :
20 E. append ( element_names [ c ] )
21 else :
22 E. append ( element_names [ c ]+” ’ ” )
23 E_i . append ( [ i , E ] )
24
25 def print_g ( g_expr ) :
26 print ( ”g ( ”+” , ” . j o i n ( element_names)+” ) = ”+g_expr )
27
28 input ( ”” )
29 e x i t (0 )
30
31 i f len (E_i ) == len ( e lements ) :
32 print_g ( ”1” )
33
34 i f len (E_i ) == 0 :
35 print_g ( ”0” )
36
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37 f _ i j = [ ]
38 for i in E_i :
39 f = [ ]
40 for j in E_i :
41 i f ( i != j ) :
42 i n t e r s e c t i o n = [ x for x in i [ 1 ] i f x in j [ 1 ] ]
43 i f ( len ( i n t e r s e c t i o n ) >= ( len ( element_names ) −1)) :
44 f . append ( [ j [ 0 ] , i n t e r s e c t i o n ] )
45 i f ( f ) :
46 f _ i j . append ( [ i [ 0 ] , f ] )
47
48 i f ( f _ i j == [ ] ) :
49 g = [ ]
50 for i in E_i :
51 g . append ( ”” . j o i n ( i [ 1 ] ) ) # m u l t i p l y e lements
52 print_g ( ”+” . j o i n ( g ) )
53
54 g_i j = [ ]
55 for i in f _ i j :
56 for j in i [ 1 ] :
57 g_i j . append ( ”” . j o i n ( j [ 1 ] ) ) # m u l t i p l y e lements
58 g_i j = l i s t ( dict . fromkeys ( g_i j ) ) # remove d u p l i c a t e s
59 sigma_g_ij = ”+” . j o i n ( g_i j )
60
61
62 def calc_mult_and ( expr ) :
63 expr = expr . s p l i t ( ”+” )
64 for i in expr :
65 i f ”0” not in i :
66 return 1
67 return 0
68
69 true_g_ij = [ ]
70 for elm in e lements :
71 tmp_g = sigma_g_ij
72 for c in range (0 , len ( elm ) −1):
73 i f ( elm [ c ] == 1 ) :
74 tmp_g = tmp_g . r e p l a c e ( element_names [ c ]+” ’ ” , ”0” )
75 tmp_g = tmp_g . r e p l a c e ( element_names [ c ] , ”1” )
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76 else :
77 tmp_g = tmp_g . r e p l a c e ( element_names [ c ]+” ’ ” , ”1” )
78 tmp_g = tmp_g . r e p l a c e ( element_names [ c ] , ”0” )
79 true_g_ij . append ( calc_mult_and (tmp_g) )
80
81 f_j = [ ]
82 for i , elm in enumerate( e lements ) :
83 i f ( elm [ −1] == 1 and true_g_ij [ i ] == 0 ) :
84 f_j . append ( ”” . j o i n ( [ x for x in E_i i f x [ 0 ] == i ] [ 0 ] [ 1 ] ) )
85
86 print_g ( ”+” . j o i n ( g_i j + f_j ) )

In the next example, we prime exploit the binary decision hypertree
by hand for the certain T.B.T. Afterwards the binary decision hyper-
tree related to T.B.T is obtained with the help of Python programming
(Figure 10). It can be seen that the output of the Python programming
and the output of the manual method are the identical.

Example 4.1. Assume G = {x, y, z, x′, y′, z′} and give a (T.B.T )
C(φ, x, y, z) as shown in Table 4.

x y z φ(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 4. T. B. T C(φ, x, y, z)

We achieve an undirected hypergraph G′ = (G,E1, E2, E3, E4), where
E1 = {x, y, z}, E2 = {x, y′, z′},
E3 = {x′, y, z′} and E4 = {x′, y′, z}. Since E1 ∩ E2 = {x}, E1 ∩ E3 =
{y}, E1 ∩ E4 = {z}, E2 ∩ E3 = {z′}, E2 ∩ E4 = {y′}, E3 ∩ E4 = {x′}, we
get that minimum Boolean expression ψ(x, y, z) = (x+ y + z)(x+ y′ +
z′)(x′ + y+ z′)(x′ + y′ + z), thus the (0⋉ 1)-BDHT (C(φ)) are gained in
Figure 9.
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Figure 9. (0⋉ 1)-BDHT (C(φ))

Figure 10. (0⋉ 1)-BDHT (C(φ))

5. Application of Binary Decision Hypertree

In the present part, we use Python programming and present a sample
of actual-word application of binary decision hypertree.

(a) Car insurance damage: From the point of view of economic sci-
ences, financial violations in the insurance industry are increasingly be-
coming a serious and ponderable issue. One of the appropriate methods
to evaluate and detect financial fraud is the binary decision hypertree.
Especially when the speed of decision-making is important, the decision
tree provides a convenient schematic view. If we remove the worthless
and unusable data, the variables used in this model arethe history of
the policyholder, the number of claims, accident plan. Three inputs are
needed:
x = history of the policyholder, (1:=history of the policyholder > 25
years, 0 :=history of the policyholder ≤ 25 years), y = number of claims,
(1:= number of claims ∈ {2, 3, 4}, 0:= number of claims ∈ {0, 1}) z =
accident plan, (1:=having, 0:=not having). We demand to gain a bi-
nary decision supertree so that insurance companies predict all cases
(fraudulent and non-fraudulent). If the final nodes of the tree are 0, the
file is not fraudulent, and if the final nodes of the tree are 1, the file is
fraudulent. Hence, according to the T.B.T 5, and applying Python pro-
gramming, we gain the binary decision hypertree as displayed in Figure
11.
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x y z φ(x, y, z)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 5. T. B. T C(φ, x, y, z)

Figure 11. BDHT (C(φ))

(b) Prediction of chromosomal genetic diseases: Human societies have
long faced incurable genetic diseases such as Down syndrome and there
was no solution but to tolerate these people because these people face
many problems from birth and on the other hand, due to their low in-
telligence level, they never have the ability to live independently and
only bring emotional and financial burdens to their family and society.
Therefore, genetic doctors decided to prevent the birth of such babies by
diagnosing this disease early in the fetal period and terminating these
pregnancies. There are three methods for early prenatal diagnosis: Am-
niocentesis samplings, chorionic villus sampling, and non-invasive pre-
natal testing before birth. Using these three methods, they access the
fetal DNA and determine whether the fetus has a chromosomal abnor-
mality. Therefore, doctors, based on ultrasound, screening tests, and
clinical history, calculate the risk of infection and, based on this risk,
divide pregnant women into two groups: low-risk, and high-risk. So we
find a binary decision tree that, using factors extracted from screening
tests, ultrasounds, and clinical records, is free from common human er-
rors and identifies those at high risk so that fewer people suffer from the
exorbitant costs or potential risks of invasive or non-invasive tests. If we
consider the ultrasound, screening test, and clinical history as variables
x, y, and z, respectively, binary decision tree identifies which mothers
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are high risk. So, based on T.B.T 6 and using Python programming, we
get the binary decision tree as shown in Figure 12.

x y z φ(x, y, z)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 6. T. B. T C(φ, x, y, z)

Figure 12. BDHT (C(φ)).

Remark 5.1. Let n be the number of variables in table, and k be the
number of elements of Ej . Then:

(i) T (Ej) = O(n× 2n).
(ii) T (fij) = O(k2 × n).
(iii) For any 1 ≤ j ≤ 2n, if fj(x1, ..., xn) = 0 or fj(x1, ..., xn) = 1,

then complication is O(2n) for one loop via lines.
(iv) T (Ej) + T (fij) = O(n× (k2 + 2n)).

6. Conclusion

In this paper, we presented a novel notion of binary decision hyper-
tree (hyperdiagram) for each T.B.T applying the hypergraph concept
and minimum Boolean function. Then, for every T.B.T, we considered
the conditions for the isomorphisc binary decision hypertree and binary
decision hyperdiagram. The principal prosperity of this reading is a basic
documentary to really appraise the foundation of algorithms and codes



48 Marzieh Rahmati, Mohammad Hamidi and Seyyed Ali Mohammadiyeh

of Python programming. In fact, the input of each Python program is a
T.B.T and so is a binary decision hypertree. Our procedure is based on
proven theorems and Python programming written based on the algo-
rithm presented in the paper, and calculations are performed faster. In
next studies, we expect to gain more results regarding decision-making
based on hypergraphs, superhypergraphs, and their usages in the real
universe.
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