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Abstract. The structural investigation of regular prime ideals
in the setting of multiplicative hyperrings constitutes a profound
and evolving area within hyperstructure theory. This domain not
only enhances the theoretical foundation of hyperalgebra but also
provides a versatile framework for interpreting and generalizing
classical algebraic concepts. By relaxing the conventional binary
operations into hyperoperations, multiplicative hyperrings offer a
rich algebraic environment where classical notions such as ideals,
prime ideals, and their generalizations acquire novel and meaning-
ful forms. In particular, the study of generalized prime-like objects-
such as 2-absorbing δ-prime hyperideals-plays a central role in deep-
ening our comprehension of the internal behavior of hyperrings.
These generalized structures extend the traditional notion of prime
ideals and allow us to explore more intricate algebraic phenomena
that are otherwise obscured in the classical setting. The purpose of
this paper is to rigorously explore and characterize the properties of
2-absorbing δ-prime hyperideals in multiplicative hyperrings. We
aim to provide a comprehensive analysis of their defining condi-
tions, structural implications, and potential interactions with other
classes of hyperideals.
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1. Introduction

The concept of hyperstructures was first introduced by F. Marty during
the 8th Scandinavian Mathematics Congress in 1934, where he defined
hypergroups [16]. A hypergroup, as articulated by Marty, is constructed
from the Cartesian product of a non-empty set H along with a function
that maps to the power set of H. In the subsequent decade of the
1940s, significant advancements in the theory of hyperstructures were
made in various countries. In France, notable mathematicians such as
F. Marty, M. Krasner, M. Kuntzmann, and R. Croisot contributed to
the foundational results and implications of this theory. Meanwhile, in
the United States, researchers like M. Dresher, O. Ore, W. Prenowitz,
and H. Campaigne were also exploring similar concepts, while in Russia,
A. Dietzman and A. Vikhrov, along with G. Zappa in Italy, furthered the
study of hyperstructures [2, 3, 9, 10, 15, 18]. During the 1950s and 1960s,
the focus shifted to semiregular hypergroups and hyperlattices, with A.
Orsatti in Italy and M. Benado in Romania leading the research efforts.
The year 1956 marked a significant milestone when Marc Krasner intro-
duced the notions of hyperrings and hyperfields [2, 14]. The 1970s saw
further exploration of subhypergroups and their interrelations with hy-
perstructures, particularly by M. Krasner, M. Koskas, and Y. Sureau in
France. In Greece, J. Mittas and his students concentrated on canonical
hypergroups, hyperrings, and hyperlattices [13, 17, 21]. The 1980s were
characterized by the definition of various types of hyperrings, including
Multiplicative hyperrings and General hyperrings, with the former be-
ing first identified by Rosaria Rota in 1982 [20]. The 2000s witnessed
a resurgence of interest in hyperrings, with scholars such as B. Davvaz,
Salasi, Asokkumar, Procesi, Kemprasit, and Velrajan contributing to the
literature and expanding the field [6, 7, 12, 19, 22]. In classical algebra,
the notion of δ-Prime ideals was established by Zhao Dongsheng in 2000,
followed by the definition of 2-absorbing ideals by A. Badawi in 2007 [1].
The concept of regular prime ideals was introduced by J. A. Cox and A.
J. Hetzel in 2008 [4]. More recently, in 2017, Zhao Dongsheng [23] and
Brahim Fahid defined 2-absorbing δ-prime ideals in classical algebra,
elucidating their various properties [11]. Hyperrings can be categorized
into three types: a general hyperring is defined when both ”+” and ”.”
are hyperoperations; a Krasner hyperring occurs when the ”+” operation
is a normal operation, while a multiplicative hyperring is characterized



On the 2-absorbing primary hyperideals 69

by the ”+” operation being a hyperoperation [5]. In this paper, we will
focus on the investigation of 2-absorbing δ-prime hyperideals, exploring
their properties and significance within the broader context of hyper-
structures, and we complete the results obtained from Dehghanizadeh
in [8].

2. Hyperideal Extension Function

From this paper onwards, R will be considered as a multiplicative
hyperring.
Definition 2.1. Let R be a multiplicative hyperring. The function δ
that takes all hyperideals of R to other hyperideals on the same hyper-
ring is called a hyperideal extension function if the following conditions
are satisfied:

(i) For each hyperideal I of R; I ⊆ δ(I),
(ii) For hyperideals P and Q of R; P ⊆ Q, while δ(P ) ⊆ δ(Q).

Example 2.2. The identity function δ0(I) = I and δ1(I) =
√
I are

hyperideal extension functions.
Definition 2.3. Let R be a multiplicative hyperring. Let I be a hyper-
ideal of R. Let δ be an extension function. For each a, b ∈ R ; ab ⊆ I
and a /∈ I, while b ∈ δ(I), then I is called a δ-prime hyperideal.
Example 2.4. Let us define the hyperproduct for the ring of integers
(Z,+, .) as x ◦ y = {2xy, 3xy}. In this case (Z,+, ◦) is a multiplicative
hyperring. Let δ0 be the extension function. In this hyperring, the
hyperideal I = 5Z is a δ0-prime hyperideal.
Definition 2.5. Let R be a multiplicative hyperring and I be a proper
hyperideal of R. For each a, b, c ∈ R; If abc ⊆ I while ab ⊆ I or bc ⊆ δ(I)
or ac ⊆ δ(I) then I is called a 2-absorbing δ-prime hyperideal of R.
Example 2.6. Let R be a hyperring and I a hyperideal of R. The
hyperideal I is a 2-absorbing δ1-prime hyperideal if and only if it is a
2-absorbing prime hyperideal. If I be a 2-absorbing hyperideal, then for
all a, b, c ∈ R; such that abc ⊆ I we must have ab ⊆ I or bc ⊆ I = δ(I) or
ac ⊆ I = δ0(I), then I is a 2-absorbing δ0-prime hyperideal. Similarly,
the other side is shown.
Example 2.7. Let R be a multiplicative hyperring and I a hyperideal of
R. I, 2-absorbing δ1-is a prime hyperideal if and only if I is a 2-absorbing
prime hyperideal. Since I be a 2-absorbing δ1-primer hyperideal. For all
a, b, c ∈ R; abc ⊆ I while ab ⊆ I or bc ⊆

√
I = δ1(I) or ac ⊆

√
I = δ1(I),

then the 2-absorbing prime hyperideal is found. Similarly, the converse
can be shown.
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For every δ-extension function, every 2-absorbing hyperideal in a mul-
tiplicative hyperring is a 2-absorbing δ-prime hyperideal. But the con-
verse is not true.

Example 2.8. Consider the ring of integers (Z,+, .) and define the
hyperproduct as x ◦ y = {2xy, 3xy}. In this case (Z,+, ◦) is a multi-
plicative hyperring. Let δ1 be the extension function. In this hyper-
rring, the hyperideal I = 12Z is a 2-absorbing δ1-prime hyperideal.
But it is not a 2-absorbing hyperideal. Let a = 2, b = 2, c = 3.
a ◦ b ◦ c = {48, 72, 108} ⊆ I = 12Z while a ◦ b = {8, 12} ⊈ I and
b ◦ c = {12, 18} ⊈ I and a ◦ c = {12, 18} ⊈ I, so it is not a 2-absorbing
hyperideal. But for the extension function δ1; Since

√
I = 6Z, at least

one of the products falls into the radical.

A 2-absorbing δ-prime hyperideal example;

Example 2.9. Consider the ring of integers (Z,+, .). Let’s define the
hyperproduct as x◦y = {5xy, 6xy}. In this case (Z,+, ◦) is a multiplica-
tive hyperring. Let’s consider the hyperideal I = 30Z. Let the extension
function be a function that takes the hyperideal I to the radical of I.
The radical of the hyperideal I is a2 = {5a2, 6a2},
a3 = {25a3, 30a3, 36a3}, a4 = {125a4, 150a4, 180a4, 150a4, 216a4},
..., an = {5n−1, an, 6.5n−2.an, ...}.

√
I = 30Z is. For a = 2, b = 3, c =

5; 2 ◦ 3 ◦ 5 = {750, 900, 1080} ⊆ I while 2 ◦ 3 = {30, 36} ⊈ I and
3 ◦ 5 = {75, 90} ⊈ δ1(I) = 30Z and 2 ◦ 5 = {50, 60} ⊈ δ1(I) = 30Z, so I
is not a 2-absorbing δ-prime hyperideal.

3. 2-absorbing δ-prime hyperideals

In this section, we study 2-absorbing δ-prime hyperideals.

Theorem 3.1. Let δ and γ be extension functions defined on the family
of hyperideals of a hyperring R such that δ(I) ⊆ γ(I) for every hyperideal
I of R. If I is a 2-absorbing δ-prime hyperideal of R, then I is also a
2-absorbing γ-prime hyperideal of R.

Proof. Since δ(I) ⊆ γ(I) for every hyperideal I, it follows that if ab ⊆
γ(I) for some a, b ∈ R, then necessarily ab ⊆ δ(I), because δ(I) is con-
tained in γ(I). Now assume that I is a 2-absorbing δ-prime hyperideal
of R. By definition, whenever a, b, c ∈ R satisfy abc ⊆ δ(I), we must
have either ab ⊆ I, ac ⊆ I, or bc ⊆ I. Consider any a, b, c ∈ R such that
abc ⊆ γ(I). Since δ(I) ⊆ γ(I), we have abc ⊆ γ(I) implies abc ⊆ δ(I).
Applying the δ-prime assumption on I, we obtain ab ⊆ I or ac ⊆ I or
bc ⊆ I. Therefore, the same condition holds for elements whose prod-
uct lies in γ(I), showing that I satisfies the definition of a 2-absorbing
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γ-prime hyperideal. Hence, every 2-absorbing δ-prime hyperideal is also
a 2-absorbing γ-prime hyperideal, as required. □

This in the theorem suggests that if a hyperideal I is 2-absorbing and
also a 2-absorbing δ-prime hyperideal (where δ is a specific extension
function), then it automatically follows that I is a 2-absorbing γ-prime
hyperideal (assuming γ is another extension function satisfying certain
conditions). In simpler terms, this means that if a hyperideal I can be
extended in a certain way and also maintains specific properties related
to the extension functions δ and γ, then it will also possess those proper-
ties when related to the other extension function γ. This result provides
a connection between different extension functions and reinforces the
importance of understanding the behavior of hyperideals within mul-
tiplicative hyperrings. It also highlights the significance of hyperideals
having both the 2-absorbing and 2-absorbing δ-prime properties, as they
automatically inherit the 2-absorbing γ-prime property.
Remark 3.2. The intersection of two 2-absorbing δ-prime hyperideals is
not a 2-absorbing δ-prime hyperideal in general.
Proof. Let I and J be 2-absorbing δ-prime hyperideals. Let K = I ∩ J .
For ∀a, b, c ∈ R; let abc ⊆ K and ab ⊈ K. Then ab ⊈ K are ab ⊈ I and
ab ⊈ J . Let I and J be 2-absorbing is a prime hyperideal if ab ⊈ I then
acδ(I) or bcδ(I) and if ab ⊈ J then acδ(J) or bcδ(J).

If acδ(I) and bcδ(J) then ac ⊈ (K) and bc ⊈ (K) are found. □
Theorem 3.3. Let R be a hyperring, a hyperideal extension function,
and P1 and P2 are prime hyperideals. Then P1 ∩ P2 is a 2-absorbing
prime hyperideal of the multiplicative hyperring R.
Proof. For all a, b, c ∈ R; let abc ⊆ (P1 ∩P2) and ab ⊈ P1 ∩P2. We need
to show that bc ⊆ δ(P1 ∩ P2) or ac ⊆ (P1 ∩ P2). If abc ⊆ (P1 ∩ P2), then
abc ⊆ P1) and abc ⊆ P2. Since ab ⊈ P1 ∩ P2 then ab ⊈ P1 and ab ⊈ P2.
Since P1 and P2 are prime hyperideals, then c ∈ P1 when abc ⊆ P1 and
ab ⊈ P1. If abc ⊆ P2 and ab ⊈ P2 then c ∈ P2. If c ∈ P1 ∩ P2 then
bc ⊆ (P1 ∩ P2) and ac ⊆ (P1 ∩ P2) are obtained. From the definition of
P1 ∩ P2 ⊆ δ(P1 ∩ P2) then bc ⊆ δ(P1 ∩ P2) and ac ⊆ δ(P1 ∩ P2), and
hence P1 ∩ P2 is a 2-containing prime hyperideal. □
Example 3.4. Consider the set A = {2, 7} in the ring of integers
(Z,+, .). (Z,+, ◦) is a multiplicative hyperring with the product defined
as x ◦ y = {2xy, 7xy}, P1 = (2) and P2 = (3) are prime hyperideals.
P1 ∩ P2 = (2) ∩ (3) = (6) is a 2-absorbing prime hyperideal.
Theorem 3.5. Let R be a multiplicative hyperring and P be a 2-
absorbing prime hyperideal of R. For any a, b ∈ R; then abI ⊆ P
and ab ⊈ P , then aI ⊆ δ(P ) or bI ⊆ δ(P ).
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Proof. For some a, b ∈ R; Let abI ⊆ P and ab ⊈ P. Let aI ⊈ δ(P ) and
bI ⊈ δ(P ) be assumed. For c, d ∈ I; we obtain ac ⊈ δ(P ) and bd ⊈ δ(P ).
Since P is a 2-containing prime hyperideal, when abc ⊆ P and ab ⊈ P ,
ac ⊈ δ(P ) is bc ⊆ δ(P ) and when abd ⊆ P and ab ⊈ P , bd ⊈ δ(P ) is bd
ensures that ad ⊆ δ(P ). Since abc + abd = ab(c + d) ⊆ P and ab ⊈ P ,
either a(c+ d) ⊆ δ(P ) or b(c+ d) ⊆ δ(P ) is obtained. If a(c+ d) ⊆ δ(P )
then since ad ⊆ δ(P ) then the contradiction ac ⊆ δ(P ) is obtained.

If b(c+d)subseteqdelta(P ), then since bc ⊆ δ(P ), so the contradiction
bd ⊆ δ(P ) is obtained. From here we get the result aI ⊆ δ(P ) or
bI ⊆ δ(P ).

□

Example 3.6. Consider the set A = {2, 5} in the ring of integers
(Z,+, .). x ◦ y = {2xy, 5xy}together with the product we define as
(Z,+, ◦) is a multiplicative hyperring. P = 3Z is a 2-containing prime
hyperideal. Let a = 4, b = 5 and I = 6Z. a ◦ b = {40, 100} ⊈ P.
a ◦ b ◦ I = {480, 1200, 960, 2400, 1440, 3600, 1200, 3000, 2400, 6000, 3600,
1200, 3000, 2400, 6000, 3600, 9000, P = 3Z} while a◦I = 4I = {48, 120, 144,
360, ...} ⊆ δ0(P ), δ1(P ) is found.

Theorem 3.7. Let R be a multiplicative hyperring and P a proper
hyperideal of R. P is 2-containing δ-prime if and only if for some
hyperideals I, J,K of R if IJK ⊆ P , then IJ ⊆ P or IKsubseteqδ(P )
or JK ⊆ δ(P ).

Proof. Let P be a 2-containing-prime hyperideal. Let IJK ⊆ P and
IJ ⊈ P. We must show that IK ⊆ δ(P ) or JK ⊆ δ(P ). Suppose there
are IK ⊈ δ(P ) and JK ⊈ δ(P ). There exists ∃r ∈ I, s ∈ J such that
rK ⊈ δ(P ) and sK ⊈ δ(P ). Since rsK ⊆ P, rK ⊈ δ(P ), sK ⊈ δ(P ),
we obtain rs ⊆ P from the Theorem 3.5. Since IJ ⊈ P, there exist
a ∈ I and b ∈ J such that ab ⊈ P . Since abK ⊂ P and ab ⊈ P ,
then aK ⊆ δ(P ) or bK ⊆ δ(P ). Let us assume that aK ⊆ δ(P ) and
bK ⊈ δ(P ). Since rbK ⊆ P, bK ⊈ δ(P ) and rK ⊈ δ(P ), then rb ⊆ P.
Since (a+r)bK ⊆ P, aK ⊆ δ(P ) and rK ⊈ δ(P ), then (a+r)K ⊈ δ(P ).
If (a + r)K ⊆ δ(P ) then (a + r)k ⊆ δ(P ) and rk ⊈ δ(P ) are obtained.
Since aK ⊆ δ(P ) and rksubseteqδ(P ), by the Theorem 3.5 (a+ r)b ⊆ P
is obtained. Since rb ⊆ P, ab ⊆ P . Thus, a contradiction is obtained.
Assuming aK ⊈ δ(P ) and bKsubseteqδ(P ), we obtain a contradiction
in a similar way. □

4. Some Application

In this section, we illustrate the theorem 3.1 through a few examples
showing how a 2-absorbing δ-prime hyperideal automatically becomes a
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2-absorbing γ-prime hyperideal whenever δ(I) ⊆ γ(I) holds. For sim-
plicity, we use classical commutative rings equipped with natural hyper-
ideal structures.

(1) Extension functions on the ring of integers:

Example 4.1. Let R = Z, the ring of integers. Define two
extension functions as follows:

δ(I) = 2I = {2x | x ∈ I}, γ(I) = I.

Then clearly δ(I) ⊆ γ(I) for every ideal I.
Let I = 6Z. We claim that I is a 2-absorbing δ-prime hy-

perideal. Suppose a, b, c ∈ Z with abc ∈ δ(I) = 12Z. Then
abc = 12k for some k ∈ Z. Hence at least one of ab, ac, or bc is
divisible by 6, that is, ab ∈ I or ac ∈ I or bc ∈ I.

Since δ(I) ⊆ γ(I), whenever abc ∈ γ(I) = 6Z, we also have
abc ∈ δ(I). By the theorem 3.1, I must also be a 2-absorbing
γ-prime hyperideal.

6Z is 2-absorbing γ-prime because it was 2-absorbing δ-prime
under δ(I) = 2I and γ(I) = I.

(2) Extensions on a quotient ring:

Example 4.2. Let R = Z12, and consider the hyperideal I =
{0, 6}. Define

δ(I) = I + {0, 3} = {0, 3, 6, 9}, γ(I) = R.

We have δ(I) ⊆ γ(I) trivially.
Assume a, b, c ∈ R such that abc ∈ δ(I). This means abc ≡

0, 3, 6, or 9 (mod 12). Then at least one of the pairwise prod-
ucts ab, ac, bc is divisible by 6, since 6 divides some element in
{0, 3, 6, 9} only when two of the factors are even. Therefore, I is
a 2-absorbing δ-prime hyperideal.

By the theorem 3.1, since δ(I) ⊆ γ(I), I must also be 2-
absorbing γ-prime.

The hyperideal {0, 6} in Z12 remains 2-absorbing when moving
from δ-extension to γ-extension.

(3) Polynomial ring case:
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Example 4.3. Let R = Z[x] and choose the hyperideal I = (x2).
Define

δ(I) = (2x2), γ(I) = (x2, 2x).

Clearly, δ(I) ⊆ γ(I).
Assume f, g, h ∈ Z[x] and fgh ∈ δ(I) = (2x2). This implies

that fgh = 2x2p(x) for some p(x) ∈ Z[x].
Because x2 divides fgh, at least two of the polynomials must

have an x factor. Hence at least one of fg, fh, or gh lies in (x2),
which is exactly the condition for I to be 2-absorbing δ-prime.

Now if fgh ∈ γ(I) = (x2, 2x), then fgh can be written as
fgh = x2p(x) + 2xq(x) for some polynomials p, q. Since the
first term already satisfies the δ-condition and δ(I) ⊆ γ(I), the
same argument shows that one of the pairwise products lies in
I = (x2). Thus, I is also 2-absorbing γ-prime.

For the polynomial ring Z[x], the theorem ensures that (x2)
maintains its 2-absorbing property when passing from δ to γ
extension as long as inclusion δ(I) ⊆ γ(I) holds.

These examples highlight the consistency of the theorem 3.1 across
different algebraic structures: from integers, to residue rings, and poly-
nomial rings.

Now, we apply the theorem 3.1 to several finite commutative rings to
illustrate how a 2-absorbing δ-prime hyperideal automatically becomes
a 2-absorbing γ-prime hyperideal under the inclusion δ(I) ⊆ γ(I).

Example 4.4. Let R = Z8 = {0, 1, 2, 3, 4, 5, 6, 7} and consider the ideal
I = {0, 4} = 4Z8.

Define the following extension functions:

δ(I) = 2I = {0}, γ(I) = I = {0, 4}.

Clearly, δ(I) ⊆ γ(I).
Now, take any a, b, c ∈ R such that abc ∈ δ(I) = {0}. This means

8 divides abc, which is possible only if at least one of ab, ac, or bc is
a multiple of 4. Hence, ab ∈ I or ac ∈ I or bc ∈ I. Therefore, I is a
2-absorbing δ-prime hyperideal.

By the theorem, since δ(I) ⊆ γ(I), I is also a 2-absorbing γ-prime
hyperideal.

So, in the finite ring Z8, the ideal 4Z8 preserves the 2-absorbing prime
property under both δ and γ extensions.
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Example 4.5. Let R = Z9 = {0, 1, 2, . . . , 8} and I = 3Z9 = {0, 3, 6}.
Define

δ(I) = 2I = {0, 6, 3} = {0, 3, 6}, γ(I) = R = Z9.

Thus δ(I) ⊆ γ(I).
Choose arbitrary a, b, c ∈ R with abc ∈ δ(I) = {0, 3, 6}. This equality

means that abc is a multiple of 3. Then the product of any two of them
(say ab) will also often be a multiple of 3, especially since 3 divides many
elements in Z9. Explicitly:

(a, b, c) abc (mod 9)
(1, 3, 2) 6 ∈ δ(I)
(2, 3, 4) 6 ∈ δ(I)
(3, 3, 3) 0 ∈ δ(I)

and in each row, ab or another pairwise product lies in I. Hence I is a
2-absorbing δ-prime hyperideal.

Since δ(I) ⊆ γ(I), the theorem ensures that I is also a 2-absorbing
γ-prime hyperideal.

So, in Z9, the ideal 3Z9 keeps the same 2-absorbing property across δ
and γ extensions.

Example 4.6. Let R = Z6[x]/(x
2), which is a finite ring of cardinality

36. Every element can be written as a+ bx where a, b ∈ Z6 and x2 = 0.
Consider the hyperideal

I = { a+ bx | a is even in Z6 }.
Thus I = {0, 2, 4}+ Z6x.

Define
δ(I) = { a+ bx | a ∈ {0, 2, 4}, b even in Z6 },

γ(I) = { a+ bx | a ∈ {0, 2, 4}, b ∈ Z6 }.
Clearly, δ(I) ⊆ γ(I).

Now choose f, g, h ∈ R. If fgh ∈ δ(I), then the constant term of
fgh is even in Z6. Hence, at least one of fg, fh, or gh must have even
constant part, which implies fg ∈ I or fh ∈ I or gh ∈ I. Thus I is a
2-absorbing δ-prime hyperideal.

Since δ(I) ⊆ γ(I), by the theorem I is also 2-absorbing γ-prime.
So, in the finite ring Z6[x]/(x

2), the hyperideal of elements with even
constant term retains the 2-absorbing property through both extensions.

These three cases demonstrate how the theorem holds consistently
across diverse finite rings: Z8, Z9, and Z6[x]/(x

2). They provide concrete
finite illustrations of the relationship δ(I) ⊆ γ(I) for 2-absorbing prime
hyperideals.
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5. Conclusion

The investigation of prime ideals within multiplicative hyperrings is
fundamental to advancing the theoretical framework of hyperstructure
theory. By generalizing set-valued operations, hyperrings offer novel
avenues for extending classical algebraic concepts. This work focused
specifically on characterizing and analyzing 2-absorbing δ-prime hyper-
ideals, which serve as a synthesis of prime and 2-absorbing ideals in this
context. Our analysis elucidated the essential properties and structural
interplay of these hyperideals, revealing distinct algebraic behaviors that
differentiate them from traditional ideal counterparts. The results pre-
sented here significantly contribute to the ideal theory of hyperalgebraic
systems. Future research directions should explore the behavior of these
structures under homomorphic mappings, direct products of hyperrings,
and within categorical settings, promising further refinement of algebraic
generalizations.
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