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1. Introduction

A central theme in the study of rings of continuous functions has been
regarded as the examination of how topological properties of a space
X are reflected in the algebraic structure of C(X). In this context, at-
tention has been directed toward the subring Cc(X), consisting of all
continuous functions on X with countable image, as well as other re-
lated subrings, see [4], [5]. It has been established that Cc(X) retains
many features of C(X), while exhibiting distinct characteristics of its
own. Specifically, the role of z-ideals in C(X) has been shown to have
a precise analogue in Cc(X). Moreover, it has been demonstrated that
each Cc(X) is isomorphic to Cc(Y ) for some zero-dimensional space Y ,
thereby permitting the reduction of problems to the zero-dimensional
setting without loss of generality. This parallels the classical result that
C(X) is isomorphic to C(Y ) for some completely regular space Y . Fur-
thermore, several properties absent in the ring C∗(X) of bounded con-
tinuous functions have been verified to hold within Cc(X). Although
Cc(X) is not algebraically defined, it has been observed, analogously
to C∗(X), to be preserved under isomorphism: if C(X) ∼= C(Y ), then
both Cc(X) ∼= Cc(Y ) and CF (X) ∼= CF (Y ) follow, where CF (X) de-
notes the subring of C(X) consisting of functions with finite image.
This preservation arises from the fact that for any ring homomorphism
φ : C(X) → C(Y ), one has Im(φ(f)) ⊆ Im(f) (see the discussion fol-
lowing [4, Corollary 3.5]). It should also be recalled that both Cc(X)
and CF (X) are algebraically closed in C(X) ([4, Proposition 3.1]). In
addition, Cc(X) has been recognized as an algebraic subring of C(X),
since it contains all constant functions and satisfies the property that
f2 ∈ Cc(X) implies f ∈ Cc(X) for each f ∈ C(X). It is also noteworthy
that CF (X) forms a regular ring and constitutes the smallest algebraic
subring of C(X) ([6, 16.29]; [2, Proposition 2.1]). In summary, Cc(X)
has been acknowledged as more than a mere replica of C(X). From the
results presented in [5], [4], [7], [8], [15], [10], and [2], the fundamen-
tal properties of Cc(X) may be systematically learned. Furthermore,
it has been perceived that Cc(X) and certain locally related construc-
tions, such as Lc(X) ([8]) and Lcc(X) ([10]), serve purposes compara-
ble to those of C(X) in many contexts of study. A significant obser-
vation is that the Stone–Čech compactification βX, commonly identi-
fied with Max(C(X)), represents the space of maximal ideals of C(X)
equipped with the Zariski topology. In a similar vein, the Banaschewski
compactification β0X—as described in [14, Sec. 4.7]—corresponds to
Max(Cc(X)), the space of maximal ideals of Cc(X) under the Zariski
topology, as discussed in [2, Remarks 3.6, 3.7]. The support of a func-
tion f ∈ C(X) is defined as the closure of the set X \Z(f). The subring
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CK(X) is given by CK(X) = {f ∈ C(X) : the support of f is compact}.
The equivalence between CK(X) and the intersection of all free maximal
ideals in C(X)—where an ideal I is said to be free if

⋂
Z[I] = ∅, and

otherwise fixed—was first established by Kaplansky for discrete spaces.
Kaplansky also raised the question of whether this equivalence holds
more generally. Subsequently, Kohls extended the result to P -spaces,
and further generalizations were obtained using the notion of the socle
in [9]. Recent work in [16] has characterized the topological spaces for
which CK(X) equals the intersection of free maximal ideals. In particu-
lar, for pseudo-finite spaces—those in which every compact subspace is
finite—it was shown in [9] that the socle of C(X) coincides with CK(X).
In analogy with Kaplansky’s original question, the general equivalence
between CK(X) and the socle of C(X) was also posed in [9]. Let C∞(X)
denote the ideal of C∗(X) consisting of functions f that vanish at infin-
ity, i.e., for every n > 0, the set {x ∈ X : |f(x)| ≥ 1

n} is compact [6, 7F].
Azarpanah introduced the notation CF (X) for the socle of C(X), and
showed that CK(X) = CF (X) (respectively, C∞(X) = CF (X)) if and
only if X is pseudo-discrete, meaning that every compact subspace of X
has finite interior (respectively, X is pseudo-discrete with only finitely
many isolated points). It is clear that CK(X) ⊆ C∞(X). The ideal
CK(X) represents the intersection of all free ideals in both C(X) and
C∗(X), while C∞(X) corresponds to the intersection of free maximal
ideals in C∗(X) [6, 7F]. Moreover, both CK(X) and C∞(X) can be ex-
pressed as intersections of essential ideals. However, it is known that the
intersection of essential ideals in C(X) may be trivial, particularly when
X contains no isolated points. This leads to a natural question: under
what conditions do intersections such as CK(X) or C∞(X) remain es-
sential? This problem is investigated further in [1]. We define CcK(X)
as the set of all functions f ∈ Cc(X) such that the closure clX(X \Z(f))
is compact. In this paper, we study CcK(X) as an ideal of Cc(X), focus-
ing on both its algebraic and topological characteristics. In particular,
we examine its behavior in the topological ring Ccm(X), where Cc(X) is
endowed with the mc-topology. We prove that the closure of CcK(X) in
Ccm(X) coincides with the intersection of all maximal ideals of Ccm(X)
containing CcK(X). To gain deeper insight into the structure of CcK(X),
we introduce the subspace XcL of X and investigate its connection with
CcK(X). We provide necessary and sufficient conditions for CcK(X) to
be a pure ideal in Cc(X), especially in the cases where X is compact
or C-pseudocompact. Assuming that CcK(X) is pure, we show that for
every ideal I ⊆ CcK(X), the set X \ Zc(I) is contained in XcL. We
also characterize the conditions under which CcK(X) becomes a projec-
tive Cc(X)-module. Moreover, we demonstrate that Cc(X) is a pp-ring
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if and only if the space X is c-basically disconnected. Finally, we es-
tablish that XcL is c-basically disconnected and that CcK(X) is pure if
and only if, for every f ∈ Cc(X), the principal ideal (f) is a projective
Cc(X)-module.

2. CcK(X)

We denote by CcK(X) the set of all functions in Cc(X) with compact
support, that is,

CcK(X) = {f ∈ Cc(X) : Supp(f) = clX(X \ Z(f)) is compact}.
In what follows, we study CcK(X) as an ideal of Cc(X).

Recall that a topological space X is called locally compact if every
point x ∈ X has a neighborhood whose closure is compact. Similarly,
X is said to be nowhere locally compact if no point of X has a com-
pact neighborhood. Equivalently, X is nowhere locally compact if and
only if for each x ∈ X and any neighborhoods U of x, U is not compact.

The following lemma corresponds to [18, Lemma 4.4], and its proof
follows exactly the same reasoning as in that result. We include it here
since it will be used in the proof of the Theorem 2.2.

Lemma 2.1. An ideal I of Cc(X) (or C∗
c (X)) is a free ideal if and only

if for every compact subset A ⊆ X there exists f ∈ I such that f(x) ̸= 0
for all x ∈ A.

Theorem 2.2. Let X be a Hausdorff, zero-dimensional, and countable
completely regular space. Then the following hold:

1. The set CcK(X) is an ideal of C∗
c (X) = Cc(X) ∩ C∗(X).

2. If X is compact, then CcK(X) = Cc(X).
3. The set CcK(X) is a free ideal if and only if X is locally compact

and non-compact.
4. The set CcK(X) is contained in every free ideal of Cc(X) (or

C∗
c (X)).

5. The space X is nowhere locally compact if and only if CcK(X) =
{0}; equivalently, this occurs precisely when the remainder β0X \
X is dense in β0X.

Proof. (1) Let f ∈ CcK(X). Then
f(X) \ {0} = f(X \ Z(f)) ⊆ f(cl(X \ Z(f))).

Since cl(X\Z(f)) is compact and f is continuous, it follows that f(cl(X\
Z(f))) is compact and hence closed in R. Thus f(X) \ {0} is compact,
and therefore f(X) is closed in R. Hence f ∈ Cc(X), and so CcK(X) ⊆
Cc(X).
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Now, let g ∈ C∗
c (X) and f ∈ CcK(X). Then

cl(X \ Z(gf)) = cl
(
(X \ Z(g)) ∩ (X \ Z(f))

)
.

Since cl(X \Z(f)) is compact and the right-hand side is a closed subset
of it, we conclude that cl(X \ Z(gf)) is compact. Hence gf ∈ CcK(X).

(2) Suppose X is compact. For every f ∈ Cc(X), the set cl(X \Z(f))
is closed in X, hence compact. Thus CcK(X) = Cc(X).

(3) Assume CcK(X) is a free ideal. Then by Lemma 2.1, there exists
f ∈ CcK(X) such that f(x) ̸= 0 for all x ∈ X. This implies that
X \ Z(f) is dense in X and contained in the compact set cl(X \ Z(f)),
showing that X is locally compact. Moreover, X cannot be compact,
since otherwise CcK(X) = Cc(X), contradicting the assumption that
CcK(X) is a proper free ideal.

Conversely, assume X is locally compact but not compact. By part
(1), CcK(X) is an ideal. To show it is free, take any compact set A ⊆ X.
Since X is locally compact, each x ∈ A has a compact neighborhood.
Using the complete regularity and countability assumptions, there exists
f ∈ Cc(X) with A ⊆ X \ Z(f) ⊆ N , where N is compact. Hence
cl(X \ Z(f)) ⊆ N is compact, so f ∈ CcK(X) and f(x) ̸= 0 for all
x ∈ A. Thus CcK(X) is free.

(4) Let f ∈ CcK(X) and I be a free ideal of Cc(X). By Lemma 2.1,
there exists g ∈ I that does not vanish on cl(X \ Z(f)), i.e.,

cl(X \ Z(f)) ⊆ X \ Z(g).

Thus Z(g) ⊆ intZ(f). By [6, Problem 1D.1], this implies that f is a
multiple of g, so f ∈ I. A similar argument works in C∗

c (X).
(5) If X is nowhere locally compact, then for every f ∈ Cc(X) the set

cl(X \Z(f)) is non-compact. Hence no nonzero f can belong to CcK(X),
so CcK(X) = {0}. Conversely, if CcK(X) = {0}, then no nonzero func-
tion has compact support, which means X is nowhere locally compact.
The equivalent characterization follows from the fact that β0X \ X is
dense in β0X exactly in this case. □

Theorem 2.3. Suppose that f ∈ Cc(X) is such that clβ0XZ(f) is a
neighbourhood of β0X \X, then f ∈ CcK(X).

Proof. It suffices to show that clX(X \Z(f)) is closed in β0X and hence
compact. Since Z(f) is closed in X, we infer that clβ0XZ(f) ∩ (X \
Z(f)) ̸= ∅. By hypothesis, there exists an open set U in β0X such that
β0X\ ⊂ U ⊂ clβ0XZ(f). Hence U∩(X\Z(f)) = ∅, which further implies
because U is open in β0X that U ∩ clβ0X(X \ Z(f)) = ∅. Consequently
U ∩ cl(X \ Z(f)) = ∅. Since β0X \ X ⊂ U , we infer that no point of
β0X \X is a limit point of clX(X \Z(f)) in the space β0X. Thus there



Continuous Functions with Countable Values and Compact Support 83

does not exist any limiting point of clX(X \ Z(f)) out side it in the
entire space β0X. Hence clX(X \ Z(f)) is closed in β0X. □

We recall that for every zero-dimensional space X, the maximal ideals
of Cc(X) are precisely of the following form:

Mp
c = {f ∈ Cc(X) : p ∈ clβ0X Z(f)}, (p ∈ β0X).

Moreover, for each p ∈ β0X, we recall that
Op

c = {f ∈ Cc(X) : p ∈ intβ0X clβ0X Z(f)}.

For additional properties and related results, see [2].

Remark 2.4. CcK(X) ⊆
⋂
{Op

c : p ∈ β0X \ X}. This follows from
Theorem 2.2, which states that CcK(X) is contained in every free ideal
of Cc(X) (C∗

c (X)). Moreover, since for each p ∈ β0X, the ideal Op
c is

free, the claim follows.

Theorem 2.5. Let X be zero-dimensional and Hausdorff. Then

CcK(X) =
⋂

{Op
c : p ∈ β0X \X}.

Proof. Let f ∈ Op
c for each p ∈ β0X\X. Then clβ0XZ(f) is a neighbour-

hood of each point of β0X\X in the space β0X. It follows from Theorem
2.3 that f ∈ CcK(X). Thus

⋂
{Op

c : p ∈ β0X \ X} ⊂ CcK(X). The
reversed implication relation is already realized in Remark 2.4. Hence
CcK(X) =

⋂
{Op

c : p ∈ β0X \X}. □

Corollary 2.6. The ideal CcK(X) is the intersection of all free ideals
in Cc(X), that is, in C∗

c (X).

Proof. By Theorem 2.2(4), if E denotes the family of all free ideals in
Cc(X) (i.e., C∗

c (X)), then

CcK(X) ⊆
⋂

E.

Moreover, if p ∈ β0X \X, then Op
c is a free ideal. Hence,⋂

E ⊆
⋂

{Op
c : p ∈ β0X \X}.

Now, by Theorem 2.5, it follows that

CcK(X) =
⋂

E.

□

Let us recall that U+
c (X) = {u ∈ U+(X) : u ∈ Cc(X)}. The mc-

topology on Cc(X) is defined by taking the subset of the form
Bc(f, u) = {g ∈ Cc(X) : |f(x)− g(x)| < u(x), ∀x ∈ X},
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as a base for a neighborhood system at f , for each f ∈ Cc(X) and
u ∈ U+

c (X). The set Cc(X) endowed with the mc-topology is denoted
by Ccm(X), see [11], [17].

Similar to [6] and [19], it can be shown that the closure of an ideal
I ⊆ Ccm(X) is precisely the intersection of all maximal ideals containing
I. Consequently, an ideal of Ccm(X) is closed if and only if it is the
intersection of maximal ideals. Therefore, every maximal ideal in Cc(X)
is closed with respect to the mc-topology.

We characterize the closure of CcK(X) in Ccm(X) as the intersection
of all maximal ideals containing it.

Theorem 2.7. clm(CcK(X)) =
⋂

p∈β0X\X Mp
c .

Proof. CcK(X) =
⋂

p∈β0X\X Op
c , so CcK(X) ⊆

⋂
p∈β0X\X Mp

c . Since
every maximal ideal of Ccm(X) is closed, we infer that the intersection
of maximal ideals is closed. Therefore clm(CcK(X)) ⊆

⋂
p∈β0X\X Mp

c .
Now, we suppose that f ∈

⋂
p∈β0X\X Mp

c , then β0X \ X ⊆ clβ0XZ(f).
We must prove that Bc(f, u) ∩ CcK(X) ̸= ∅ for u ∈ U+

c (X). For this
purpose, we define the following function:

g(x) =


f(x) + u(x)

2 , f(x) ⩽ −u(x)
2

0 , |f(x)| ⩽ u(x)
2

f(x)− u(x)
2 , f(x) ⩾ u(x)

2 ,

It is evident that g ∈ Cc(X). we set H := {x ∈ X : |f(x)| ⩾ u(x)
2 },

then H is a zero-set in X. Suppose that h ∈ Cc(X) such that H = Z(h)
and we show that Z(f) ⊆ X \ Z(h) ⊆ Z(g). For this main, we suppose
that f(x) = 0, so x ∈ Z(f). Hence f(x) = 0 < u(x)

2 , and therefore x ∈
X \Z(h). Also, if x ∈ X \Z(h), then |f(x)| < u(x)

2 , so x ∈ Z(g). Hence,
clβ0XZ(g) is a zero-set and β0X \ X ⊆ clβ0XZ(f) ⊆ intβ0Xclβ0XZ(g).
thus, from the other side, for any g ∈

⋂
p∈β0X\X Op

c = CcK(X). That
is, |f(X)− g(X)| < u(X) for all x ∈ X. Which means g ∈ Bc(f, u). So
|f − g| < u, and therefore g ∈ Bc(f, u) ∩ CcK(X). □

3. Purity of the ideal CcK(X)

In this section, we introduce the space XcL, examine its relation-
ship with CcK(X), and conclude by stating the conditions under which
CcK(X) is pure.

Definition 3.1. If I is an ideal of Cc(X), then

X \ Zc(I) =
⋃
f∈I

X \ Z(f).
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Definition 3.2. Let X be zero-dimension. XcL is the set of all point in
X having compact neighborhood.

Remark 3.3. X is locally compact if and only if X = XcL. Also if
XcL = ∅, then X is nowhere locally compact.

Lemma 3.4. Let X be countable completely regular, then
XcL = X \ Zc(CcK(X))

.

Proof. Suppose x ∈ X \ Zc(CcK(X)). There exists an element f in
CcK(X) exists such that f(x) ̸= 0, which imply that X \ Z(f) is compact
and X \ Z(f), and so X \ Z(f) is a compact neighborhood of x. But
we know x ∈ X \ Z(f) ⊆ X \ Z(f), given that X \ Z(f) is an open set
containing x, so X \ Z(f) is a compact neighborhood of x. Therefore
x ∈ XcL. Contrariwise, we prove XcL ⊆ X \ Zc(CcK(X)). Suppose
x ∈ XcL. By definition space XcL, x has a compact neighborhood like
U which x ∈ int U and since X is countable completely regular, there
exists f ∈ Cc(X) such that x ∈ X \ Z(f) ⊆ U . Since U is compact,
we infer that U is close. So x ∈ X \ Z(f) ⊆ X \ Z(f) ⊆ U = U.

Therefore X \ Z(f) is a subset compact of U . So X \ Z(f) is compact
and f ∈ CcK(X). Therefore XcL = X \ Zc(CcK(X)). □
Remark 3.5. Throughout this paper for every f ∈ C(X) we set f∗ :=
−1 ∨ (f ∧ 1). Also, the continuous extension of f∗ over β0X is called
closure of f and we write f̄ = (f∗)β0 .

Theorem 3.6. The following statements are true for any zero-dimension
space X.

1. XcL = intβ0 X, which is an open subset of X and of β0X.
2. XcL is locally compact subset of X.
3. For each f ∈ CcK(X), X \ Z(f) is an open subset of β0X.

Proof. (1) Let x ∈ intβ0XX, then there exists an open set U of β0X
such that x ∈ X ⊆ U . Regularity of β0X implies that there exists an
open set V of β0X such that x ∈ V ⊆ clβ0X ⊆ U . Hence, clβ0XV is
compact neighborhood of X and so x ∈ XcL

Part(2) from the first part, it easily follows.
(3) X \Z(f) is open in X and (X \Z(f))∩XcL = X \Z(f). so X \Z(f)
is open in XcL and by part (2), XcL is open in β0X. therefore X \Z(f)
is open in X and β0X.

□
Corollary 3.7. XcL = ∅, if and only if β0X \ X be dense in β0X, if
and only if CcK(X) = {0}.
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Proof. By Proposition 3.6, XcL = intβ0XX and β0X \ XcL = β0X \
intβ0XX. Therefore, β0X \ XcL = clβ0X(β0X \ X). So XcL = ∅ if and
only if β0X = clβ0X(β0X \X) if and only if β0X \X be dense in β0X.
Now, we show β0X \ X is dense in β0X if and only if CcK(X) = {0}.
Suppose XcL = ∅ and By Lemma 3.4, X \ Zc(CcK(X)) = ∅. Therefore⋃

f∈CcK(X)X\Z(f) = ∅ and we have X\Z(f) = ∅, for each f ∈ CcK(X).
So X\Z(f) = ∅; that is Z(f) = X. So f = 0 and CcK(X) = {0}. For the
converse, if CcK(X) = {0}, then XcL = X\Zc(CcK(X)) = X\Zc({0}) =
∅. Hence XcL = ∅. □

4. Purity of the ideal CcK(X) in compact space and
C-pesudocompact space

We recall from [6] that an ideal I of a commutative ring R is called
pure if for each a ∈ I, there exists b ∈ I such that a = ab.

Lemma 4.1. If I be a pure ideal in Cc(X), then

X \ Zc(I) =
⋃
f∈I

Supp(f).

Proof. It is clear that X \ Zc(I) =
⋃

f∈I X \ Z(f) ⊆
⋃

f∈I Supp(f).
Conversely, suppose f ∈ I. Since I is pure, we infer that there exists
g ∈ I such that f = fg and g

∣∣
Supp(f)

= 1. So for each f ∈ I, Supp(f) ⊆
X \ Z(g). Hence⋃

f∈I
Supp(f) ⊆

⋃
g∈I

X \ Z(g) = X \ Zc(I).

Therefore, X \ Zc(I) =
⋃

f∈I Supp(f). □

The following theorem is the counterpart of [13, Theorem 2.3], and
its proof follows essentially the same line of reasoning. For the sake of
clarity and completeness, we provide the full argument here.

Theorem 4.2. Let I be a Zc-ideal including CcK(X). Then the following
statements are equivalent:

(1) I is pure.
(2) I = O

β0X\(X\Zc(I))
c .

(3) X \ Zc(I) =
⋃

f∈I Supp(f).

Proof. (1) ⇒ (2). Suppose I be a pure, in this case I = OA
c such that

A =
⋂
Z(f̄), see [12]. So β0X \A =

⋃
f∈I β0X \ Z(f̄). Since X ⊆ β0X,

we infer that (β0X \Z(f))∩X = β0X ∩ (X \Z(f))∩X = X \Z(f). So

β0X\A =
⋃
f∈I

β0X\[Z(f)∪(β0X\X)] =
⋃
f∈I

(β0X\Z(f))∩X =
⋃
f∈I

X\Z(f).
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(2) ⇒ (3). By Corollary 3.6, X \ Z(f) is an open subset of β0X. So
β0X \ (X \ Zc(I)) is a closed subset of β0X. So I is a pure. Then by
Lemma 4.1 we have X \ Zc(I) =

⋃
f∈I Supp(f).

(3) ⇒ (1). Let g ∈ I. Then

Supp(g) ⊆
⋃
f∈I

Supp(f) = X \ Zc(I) =
⋃
f∈I

X \ Z(f).

Since Supp(g) is compact, we infer that Supp(g) ⊆
⋃n

i=1X \ Z(fi) for
each f1, f2, . . . , fn ∈ I. Suppose h =

n∑
i=1

f2
i . So h ∈ I and X \ Z(h) =⋃n

i=1X \Z(fi). Let k ∈ Cc(X) such that k(Supp(g)) = 1 and k(Z(h)) =
0. Then g = gk and Z(h) ⊂ Z(k). Since I is Zc-ideal, we infer that
k ∈ I and I is a pure ideal. □

Theorem 4.3. Let CcK(X) be a pure ideal. Then X \ Zc(I) is proper
subset XcL for each proper ideal I of CcK(X).

Proof. We prove the case with the help of reverse proof. Suppose I be
an ideal of CcK(X) such that X \ Zc(I) = XcL. Also let f ∈ CcK(X).
Hence by purity ideal I and Lemma 4.1, X \Zc(I) =

⋃
f∈I Supp(f). So

Supp(f) ⊆ XcL = X \Zc(I) and therefore Supp(f) ⊆
⋃n

i=1X \Z(fi) for
each fi ∈ I. Now suppose

n∑
i=1

f2
i = g. Since fi ∈ I for each i, we infer

that g ∈ I and

X \ Z(g) =

n⋃
i=1

X \ Z(fi).

Now, we define function h(x);

h(x) =


f

g
, x ∈ X \ Z(g)

0 , in other points.

Since Supp(f) ⊆ X \ Z(g), h ∈ Cc(X) and f = gh, we infer that
I = CcK(X). That it contradicts the assumption. □

Theorem 4.4. Let CcK(X) and CcK(Y ) be pure ideals. If XcL is home-
omorphic to YcL, then CcK(X) is isomorphic to CcK(Y ).

Proof. Let φ : XcL → YcL be a homeomorphism. For f ∈ CcK(Y ),
define f1 = f |YcL

. Since f : Y → R, the composition
f1 ◦ φ : XcL −→ YcL −→ R

belongs to Cc(XcL). By Lemma 3.4, we know
XcL = X \ Zc(CcK), YcL = Y \ Zc(CcK).
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If f ∈ CcK(Y ), then Y \Z(f) ⊆ YcL. Since f1 = f |YcL
, it follows that

Y \ Z(f) = Y \ Z(f1).

We claim that
Y \ Z(f) = φ

[
X \ Z(f1 ◦ φ)

]
.

Indeed, let x ∈ X\Z(f1◦φ). Then (f1◦φ)(x) ̸= 0, hence (f◦φ)(x) ̸= 0
and so φ(x) ∈ Y \ Z(f). Thus

φ[X \ Z(f1 ◦ φ)] ⊆ Y \ Z(f).

Conversely, if y ∈ Y \ Z(f), then f(y) ̸= 0. Since y ∈ YcL and φ is a
homeomorphism, there exists x ∈ XcL with y = φ(x). As f1(y) ̸= 0, we
get (f1 ◦ φ)(x) ≠ 0, hence x ∈ X \ Z(f1 ◦ φ). Therefore

Y \ Z(f) ⊆ φ[X \ Z(f1 ◦ φ)].
This proves the claim, and consequently

φ−1[Y \ Z(f)] = X \ Z(f1 ◦ φ).
Taking closures in XcL yields

clXcL
(X \ Z(f1 ◦ φ)) = φ−1

(
Supp(f)

)
,

since Supp(f) ⊆ YcL by the purity of CcK(Y ).
Now, define gf : X → R by

gf (x) =

{
f1 ◦ φ(x) , x ∈ XcL,

0 , x ∈ X \ φ−1(Supp(f)).

Since f1 ◦ φ(x) is continuous by Theorem 7.6 in [20], we infer that gf is
continuous. Also, since f1 ∈ CcK(Y ), i.e., |f1(Y )| ≤ ℵ0 and clYcL

(Y \
Z(f1)) is compact, it follows that

|(f1 ◦ φ)(XcL)| ≤ |f1(Y )| ≤ ℵ0,

and
X \ Z(f1 ◦ φ) = φ−1(Y \ Z(f1)) ⊆ X \ Z(f1).

Hence, gf ∈ CcK(X), because every closed subset of a compact space is
compact. Therefore, the support of f ,

Supp(f) = clXcL
(X \ Z(f1 ◦ φ)),

is compact. Define
φ̄ : CcK(Y ) → CcK(X), φ̄(f) = gf .

Since φ : XcL → YcL is a homeomorphism, we infer that φ̄ is a ring
homomorphism. Injectivity. Suppose φ̄(f) = 0. Then f1 ◦ φ(x) = 0 for
every x ∈ XcL, which means X \Z(f1 ◦φ) = φ−1(Y \Z(f)) = ∅. Hence
f = 0. Thus φ̄ is injective.
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Surjectivity. Let h ∈ CcK(X). Define g : Y → R by

g(y) =

{
h ◦ φ−1(y) , y ∈ YcL,

0 , y ∈ Y \ φ(Supp(h)).
Then g ∈ CcK(Y ), since φ(Supp(h)) is compact and Supp(h) ⊆ XcL by
purity. Moreover,

φ̄(g)(x) =

{
(g ◦ φ)(x) , x ∈ XcL,

0 , x ∈ X \ φ−1(Supp(g)),
= h(x).

Thus φ̄(g) = h, so φ̄ is surjective.
Therefore φ̄ is a ring isomorphism, and hence CcK(X) ∼= CcK(Y ). □
We emphasize that the proof of the following result proceeds in ex-

actly the same manner as the proof of its analogue in C(X); see [3,
Theorem 3.4].

Theorem 4.5. The principal ideal (f) is a projective Cc(X)-module if
and only if, Supp(f) is open.

We recall that a topological space X is said to be c-basically discon-
nected if for every function f ∈ Cc(X), the support Supp(f) is an open
subset of X.

A commutative ring is called a pp-ring if every principal ideal is a
projective module.

Theorem 4.6. Cc(X) is a pp-ring if and only if, X is c-basically dis-
connected.

Proof. Suppose that Cc(X) is a pp-ring. Then every principal ideal of
Cc(X) is projective. Therefore, by Theorem 4.5, the support Supp(f)
is open for each f ∈ Cc(X), which is equivalent to X being c-basically
disconnected. This completes the proof, which is also recursive in nature.

□
The following facts are the counterparts of [13, Theorem 4.5, Corol-

lary 4.6, and Corollary 4.7], and their proofs follow exactly the same
arguments as in those results. Nevertheless, we provide a proof here for
the sake of completeness.

Theorem 4.7. Let I be a pure ideal containing CcK(X). Then X\Zc(I)
is c-basically disconnected if and only if every principal ideal of I is a
projective Cc(X)-module.

Proof. Suppose Y = X \ Zc(I) and Y be c-basically disconnected and
f ∈ I. Since I is pure, we infer that by Lemma 4.1, X \ Zc(I) =⋃

f∈I Supp(f). So Supp(f) ⊆ Y . We consider f1 = f
∣∣
Y

. Hence clY (Y \
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Z(f1)) = Supp(f). Which according to the assumption Y is c-basically
disconnected. So Supp(f) is open in Y and X. Therefore according to
Theorem 4.5, ideal (f) is a projective Cc(X)-module.
For the converse, Suppose each principal ideal of I is Cc(X)-projective
module. First we show for every f ∈ CcK(Y ), Supp(f) is clopen then
using it for every f ∈ Cc(Y ), Supp(f) is clopen point. Let f1 ∈ CcK(Y )
and define

f(x) =

{
f1(x) , x ∈ clY (Y \ Z(f1))

0 , x ∈ X \ (Y \ Z(f1)).

Since f is Zc-ideal and Supp(f) is compact set containing Y , we infer
that f ∈ I. So (f) is a principal ideal of I. Hence

clY (Y \ Z(f1)) = Supp(f)

is clopen. Now, suppose a ∈ clY (Y \ Z(k)) ⊆ Y and k ∈ Cc(Y ). The
open set U exists such that U is compact and a ∈ U ⊆ U ⊆ Y . Since
X is quite regular, we infer that f ∈ Cc(X) exists such that f(a) = 1
and f(X \U) = 0. Since Supp(f) is compact and containing Y , we infer
that f ∈ I. We know (Y \ Z(f1)) ⊆ clY (Y \ Z(f1))). So
a ∈ clY (Y \ Z(f1)) ∩ clY (Y \ Z(k)) ⊆ clY (Y \ Z(f1)) ∩ clY (Y \ Z(k))

= clY (Y \ Z(h)) ∩ (Y \ Z(k))

= clY (Y \ Z(f1k)) ⊆ clY (Y \ Z(k)).

But clY (Y \ Z(f1k)) is compact. f1k ∈ CcK(X), so it is clopen. Hence
clY (Y \Z(k)) is clopen in Y . So Y = X\Zc(I) is c-basically disconnected.

□

Corollary 4.8. The space XcL is c-basically disconnected, and CcK(X)
is pure if and only if, for every f ∈ CcK(X), the principal ideal (f) is a
projective Cc(X)-module.

Proof. Assume that Supp(f) is clopen. Let g denote the characteristic
function of Supp(f). Then g ∈ CcK(X) and clearly f = fg. □

Corollary 4.9. Let X be a locally compact space. Then the following
conditions are equivalent:

(1) Cc(X) is a pp-ring.
(2) X is c-basically disconnected.
(3) Every principal ideal of CcK(X) is a projective Cc(X)-module.

Proof. (1) ⇒ (2). If Cc(X) is a pp-ring, then every principal ideal is
projective. By definition, this implies that X is c-basically disconnected,
i.e., Supp(f) is open for each f ∈ CcK(X). Hence, the argument follows
as in Theorem 4.5.
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(2) ⇒ (3) and (3) ⇒ (1). These implications follow directly from the
definitions. □
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