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ABSTRACT. In this paper, we investigate the structure of Cex (X),
the set of all functions f € C.(X) whose support, defined as clx (X'\
Z(f)), is compact. We study Ccx (X) as an ideal of C.(X) and char-
acterize its closure in the topological ring C.,, (X) as the intersec-
tion of all maximal ideals containing it. Additionally, we introduce
the space X1 and examine its relationship with C.x(X), partic-
ularly in connection with the purity and projectivity of the ideal.
We establish necessary and sufficient conditions for Cc.x (X) to be
a pure or projective C¢(X)-module. Moreover, we show that C.(X)
is a pp-ring if and only if the space X is c-basically disconnected.
Finally, we prove that Cc.x(X) is a pure ideal and that X.r is ¢
basically disconnected if and only if every principal ideal (f), with
f € Cex (X)), is a projective C.(X)-module.
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1. INTRODUCTION

A central theme in the study of rings of continuous functions has been
regarded as the examination of how topological properties of a space
X are reflected in the algebraic structure of C'(X). In this context, at-
tention has been directed toward the subring C.(X), consisting of all
continuous functions on X with countable image, as well as other re-
lated subrings, see [4], [b]. It has been established that C.(X) retains
many features of C'(X), while exhibiting distinct characteristics of its
own. Specifically, the role of z-ideals in C'(X) has been shown to have
a precise analogue in C.(X). Moreover, it has been demonstrated that
each C.(X) is isomorphic to C.(Y') for some zero-dimensional space Y,
thereby permitting the reduction of problems to the zero-dimensional
setting without loss of generality. This parallels the classical result that
C(X) is isomorphic to C(Y) for some completely regular space Y. Fur-
thermore, several properties absent in the ring C*(X) of bounded con-
tinuous functions have been verified to hold within C.(X). Although
C.(X) is not algebraically defined, it has been observed, analogously
to C*(X), to be preserved under isomorphism: if C(X) = C(Y), then
both C.(X) = C.(Y) and CF(X) = CF(Y) follow, where CF(X) de-
notes the subring of C'(X) consisting of functions with finite image.
This preservation arises from the fact that for any ring homomorphism
¢ : C(X) — C(Y), one has Im(o(f)) € Im(f) (see the discussion fol-
lowing [4, Corollary 3.5]). It should also be recalled that both C.(X)
and CF(X) are algebraically closed in C(X) ([4, Proposition 3.1]). In
addition, C.(X) has been recognized as an algebraic subring of C(X),
since it contains all constant functions and satisfies the property that
f? € Co(X) implies f € C.(X) for each f € C(X). It is also noteworthy
that C¥(X) forms a regular ring and constitutes the smallest algebraic
subring of C'(X) ([6, 16.29]; [2, Proposition 2.1]). In summary, C.(X)
has been acknowledged as more than a mere replica of C'(X). From the
results presented in [B], [4], [7], [8], [15], [10], and [2], the fundamen-
tal properties of C.(X) may be systematically learned. Furthermore,
it has been perceived that C.(X) and certain locally related construc-
tions, such as L.(X) ([8]) and L.(X) ([10]), serve purposes compara-
ble to those of C'(X) in many contexts of study. A significant obser-
vation is that the Stone-Cech compactification SX, commonly identi-
fied with Max(C(X)), represents the space of maximal ideals of C(X)
equipped with the Zariski topology. In a similar vein, the Banaschewski
compactification SyX—as described in [14, Sec. 4.7]—corresponds to
Max(C.(X)), the space of maximal ideals of C.(X) under the Zariski
topology, as discussed in [2, Remarks 3.6, 3.7]. The support of a func-
tion f € C(X) is defined as the closure of the set X \ Z(f). The subring
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Ck(X)is given by Cx (X) = {f € C(X) : the support of f is compact}.
The equivalence between Ck (X ) and the intersection of all free maximal
ideals in C'(X)—where an ideal I is said to be free if (| Z[I] = 0, and
otherwise fizred—was first established by Kaplansky for discrete spaces.
Kaplansky also raised the question of whether this equivalence holds
more generally. Subsequently, Kohls extended the result to P-spaces,
and further generalizations were obtained using the notion of the socle
in [9]. Recent work in [16] has characterized the topological spaces for
which Ck (X)) equals the intersection of free maximal ideals. In particu-
lar, for pseudo-finite spaces—those in which every compact subspace is
finite—it was shown in [9] that the socle of C'(X) coincides with Cx (X).
In analogy with Kaplansky’s original question, the general equivalence
between Cx (X) and the socle of C'(X') was also posed in [9]. Let Coo (X))
denote the ideal of C*(X) consisting of functions f that vanish at infin-
ity, i.e., for every n > 0, the set {z € X : |f(z)| > 2} is compact [6, 7F].
Azarpanah introduced the notation C'r(X) for the socle of C(X), and
showed that Cx(X) = Cp(X) (respectively, Coo(X) = Cp(X)) if and
only if X is pseudo-discrete, meaning that every compact subspace of X
has finite interior (respectively, X is pseudo-discrete with only finitely
many isolated points). It is clear that Cx(X) C Cx(X). The ideal
Ck (X) represents the intersection of all free ideals in both C(X) and
C*(X), while Cs(X) corresponds to the intersection of free maximal
ideals in C*(X) [6, 7F]. Moreover, both Cx(X) and C(X) can be ex-
pressed as intersections of essential ideals. However, it is known that the
intersection of essential ideals in C'(X) may be trivial, particularly when
X contains no isolated points. This leads to a natural question: under
what conditions do intersections such as C(X) or Coo(X) remain es-
sential? This problem is investigated further in [1]. We define C.x(X)
as the set of all functions f € C,(X) such that the closure clx (X \ Z(f))
is compact. In this paper, we study C.x(X) as an ideal of C.(X), focus-
ing on both its algebraic and topological characteristics. In particular,
we examine its behavior in the topological ring C.,, (X), where C.(X) is
endowed with the m.-topology. We prove that the closure of C.x(X) in
C.,.(X) coincides with the intersection of all maximal ideals of C,, (X)
containing C.x (X ). To gain deeper insight into the structure of C.x (X),
we introduce the subspace X.r, of X and investigate its connection with
C.r(X). We provide necessary and sufficient conditions for C.x(X) to
be a pure ideal in C.(X), especially in the cases where X is compact
or C-pseudocompact. Assuming that C.x(X) is pure, we show that for
every ideal I C C.x(X), the set X \ Z.(I) is contained in X.. We
also characterize the conditions under which C.x(X) becomes a projec-
tive C.(X)-module. Moreover, we demonstrate that C.(X) is a pp-ring
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if and only if the space X is c-basically disconnected. Finally, we es-
tablish that X, is c-basically disconnected and that C.x(X) is pure if
and only if, for every f € C.(X), the principal ideal (f) is a projective
Ce(X)-module.

2. CCK(X)

We denote by C.x(X) the set of all functions in C.(X) with compact
support, that is,

Cer(X) ={f € Ce(X) : Supp(f) = clx (X \ Z(f)) is compact}.

In what follows, we study C.x(X) as an ideal of C,(X).

Recall that a topological space X is called locally compact if every
point z € X has a neighborhood whose closure is compact. Similarly,
X is said to be nowhere locally compact if no point of X has a com-
pact neighborhood. Equivalently, X is nowhere locally compact if and

only if for each x € X and any neighborhoods U of x, U is not compact.

The following lemma corresponds to [18, Lemma 4.4], and its proof
follows exactly the same reasoning as in that result. We include it here
since it will be used in the proof of the Theorem P.2.

Lemma 2.1. An ideal I of Co(X) (or C}(X)) is a free ideal if and only
if for every compact subset A C X there exists f € I such that f(x) # 0
forallz € A.

Theorem 2.2. Let X be a Hausdorff, zero-dimensional, and countable
completely regular space. Then the following hold:
1. The set Cex(X) is an ideal of CH(X) = C.(X) N C*(X).
2. If X is compact, then Cox(X) = Co(X).
3. The set C.x(X) is a free ideal if and only if X is locally compact
and non-compact.
4. The set C.x(X) is contained in every free ideal of Ce(X) (or
C(X)).
5. The space X is nowhere locally compact if and only if Cox(X) =
{0}; equivalently, this occurs precisely when the remainder 5o X \
X is dense in BpX.

Proof. (1) Let f € Cei(X). Then

FX)NA{0} = F(X\ Z(F)) € Fll(X\ Z(f)))-
Since cl(X'\ Z(f)) is compact and f is continuous, it follows that f(cl(X'\
Z(f))) is compact and hence closed in R. Thus f(X) \ {0} is compact,
and therefore f(X) is closed in R. Hence f € C.(X), and so C.x(X) C
C.(X).
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Now, let g € C*(X) and f € C.x(X). Then

cl(X\ Z(gf)) =l (X \ Z(9)) N (X \ Z(f)))-

Since cl(X \ Z(f)) is compact and the right-hand side is a closed subset
of it, we conclude that cl(X \ Z(gf)) is compact. Hence gf € C.x(X).

(2) Suppose X is compact. For every f € C.(X), the set cl(X \ Z(f))
is closed in X, hence compact. Thus C.x(X) = C.(X).

(3) Assume C.x(X) is a free ideal. Then by Lemma @, there exists
f € C.x(X) such that f(x) # 0 for all x € X. This implies that
X \ Z(f) is dense in X and contained in the compact set cl(X \ Z(f)),
showing that X is locally compact. Moreover, X cannot be compact,
since otherwise C.x(X) = C.(X), contradicting the assumption that
C.kx(X) is a proper free ideal.

Conversely, assume X is locally compact but not compact. By part
(1), Cerx (X) is an ideal. To show it is free, take any compact set A C X.
Since X is locally compact, each x € A has a compact neighborhood.
Using the complete regularity and countability assumptions, there exists
f e Cu(X) with A C X\ Z(f) € N, where N is compact. Hence
c(X \ Z(f)) € N is compact, so f € Cex(X) and f(z) # 0 for all
x € A. Thus Cex(X) is free.

(4) Let f € Cox(X) and I be a free ideal of Cr(X). By Lemma @,
there exists g € I that does not vanish on cl(X \ Z(f)), i.e.,

(X \ Z(f)) € X\ Z(g).

Thus Z(g) C int Z(f). By [6, Problem 1D.1], this implies that f is a
multiple of g, so f € I. A similar argument works in C(X).

(5) If X is nowhere locally compact, then for every f € C.(X) the set
cl(X'\Z(f)) is non-compact. Hence no nonzero f can belong to Cex (X),
so Cex(X) = {0}. Conversely, if Cox(X) = {0}, then no nonzero func-
tion has compact support, which means X is nowhere locally compact.
The equivalent characterization follows from the fact that foX \ X is
dense in By X exactly in this case. O

Theorem 2.3. Suppose that f € C.(X) is such that clg,xZ(f) is a
neighbourhood of BoX \ X, then f € Cex(X).

Proof. 1t suffices to show that clx (X \ Z(f)) is closed in Sy X and hence
compact. Since Z(f) is closed in X, we infer that clg,x Z(f) N (X \
Z(f)) # 0. By hypothesis, there exists an open set U in Sy X such that
BoX\ C U Cclg,xZ(f). Hence UN(X\Z(f)) = 0, which further implies
because U is open in fpX that U Nclg,x (X \ Z(f)) = 0. Consequently
Unc(X\ Z(f)) = 0. Since pX \ X C U, we infer that no point of
BoX \ X is a limit point of clx (X \ Z(f)) in the space Sy X. Thus there
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does not exist any limiting point of clx (X \ Z(f)) out side it in the
entire space SpX. Hence clx (X \ Z(f)) is closed in [y X. O

We recall that for every zero-dimensional space X, the maximal ideals
of C.(X) are precisely of the following form:

MZ={f e Ce(X):pecgxZ(f)},  (p€FHoX)
Moreover, for each p € By X, we recall that
O ={feC(X):pe intg, x clg,x Z(f)}-
For additional properties and related results, see [2].

Remark 2.4. C.x(X) C N{OY : p € BoX \ X}. This follows from
Theorem P.2, which states that C.x(X) is contained in every free ideal
of C.(X) (CX(X)). Moreover, since for each p € Sy X, the ideal OF is
free, the claim follows.

Theorem 2.5. Let X be zero-dimensional and Hausdorff. Then
Ce(X) =[{OF : p€BoX\ X}

Proof. Let f € OF for each p € By X \ X. Then clg,x Z(f) is a neighbour-
hood of each point of Sy X \ X in the space 5pX. It follows from Theorem

that f € Cex(X). Thus N{O% : p € BoX \ X} C Cep(X). The
reversed implication relation is already realized in Remark R.4. Hence
Cex(X)=N{OF :pe BpX \ X}. O

Corollary 2.6. The ideal C.x(X) is the intersection of all free ideals
in Co(X), that is, in C¥(X).

Proof. By Theorem @(4), if E denotes the family of all free ideals in
C.(X) (i-e., CX(X)), then

Cex(X) €[ E-
Moreover, if p € Sy X \ X, then OF is a free ideal. Hence,
(VEC({0r:pepBoX\ X}
Now, by Theorem @, it follows that
Cex(X) = ﬂ E.
O

Let us recall that U (X) = {u € UT(X) : u € Ce(X)}. The me
topology on C.(X) is defined by taking the subset of the form

Be(f,u) = {g € Ce(X) : |f(2) — g(z)] <u(z), Vee X},
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as a base for a neighborhood system at f, for each f € C.(X) and
u € UF(X). The set C.(X) endowed with the m.-topology is denoted
by Cem (X)), see [L1], [IL7].

Similar to [6] and [19], it can be shown that the closure of an ideal
I C C.pn(X) is precisely the intersection of all maximal ideals containing
I. Consequently, an ideal of Cgy,(X) is closed if and only if it is the
intersection of maximal ideals. Therefore, every maximal ideal in C.(X)
is closed with respect to the m.-topology.

We characterize the closure of C.x(X) in Cpp, (X) as the intersection
of all maximal ideals containing it.

Theorem 2.7. cly(Cex (X)) = Npegox\x Me -

Proof. Cex (X) = (Npepox\x OF, so C.x(X) C Mpesox\x MP. Since
every maximal ideal of C.,,(X) is closed, we infer that the intersection
of maximal ideals is closed. Therefore clm (Cex (X)) € (pep,x\x M

Now, we suppose that f € (,cs x\x M?, then BoX \ X C clg,x Z(f).
We must prove that B.(f,u) N Cex(X) # 0 for u € UF(X). For this
purpose, we define the following function:

u(x)

flo)+42 0 fa) < =
g(@) =40 f(@)] < U2
flo) =4 p(r) > )

It is evident that g € C.(X). we set H := {z € X : [f(x)| > @},
then H is a zero-set in X. Suppose that h € C.(X) such that H = Z(h)
and we show that Z(f) C X \ Z(h) C Z(g). For this main, we suppose
that f(x) =0, s0 z € Z(f). Hence f(z) =0 < u(‘r) , and therefore = €
X\ Z(h). Also, if v € X\ Z(h), then |f(x)| < “ w) ,s0 x € Z(g). Hence,
clg,x Z(g) is a zero-set and FpX \ X C clgOXZ(f) C intg,xclg,x Z(g).
thus, from the other side, for any g € (,cg,x\x Of = C.x(X). That
is, | f(X) — g(X)| < w(X) for all z € X. Which means g € B.(f,u). So
|f — g| < u, and therefore g € B.(f,u) N Cer (X). O

3. PURITY OF THE IDEAL C.k(X)

In this section, we introduce the space X.;, examine its relation-
ship with C.x(X), and conclude by stating the conditions under which
Cer (X) is pure.

Definition 3.1. If I is an ideal of C,(X), then
X\ Ze(D) = {J X\ 2())

fel
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Definition 3.2. Let X be zero-dimension. Xy, is the set of all point in
X having compact neighborhood.

Remark 3.3. X is locally compact if and only if X = X.;. Also if
X.r, = 0, then X is nowhere locally compact.

Lemma 3.4. Let X be countable completely reqular, then
Xerp = X\ Ze(Cex (X))

Proof. Suppose x € X \ Z.(C.x(X)). There exists an element f in
Coi (X) exists such that f(z) # 0, which imply that X \ Z(f) is compact
and X \ Z(f), and so X \ Z(f) is a compact neighborhood of . But
we know z € X \ Z(f) C X \ Z(f), given that X \ Z(f) is an open set
containing xz, so X \ Z(f) is a compact neighborhood of z. Therefore
x € X.r. Contrariwise, we prove X, C X \ Z.(C.x(X)). Suppose
x € X.1. By definition space X.r, z has a compact neighborhood like
U which z € intU and since X is countable completely regular, there
exists f € C.(X) such that z € X \ Z(f) C U. Since U is compact,
we infer that U is close. So 2z € X \ Z(f) € X\ Z(f) C U = U.
Therefore X \ Z(f) is a subset compact of U. So X \ Z(f) is compact

and f € Cox(X). Therefore X.p = X \ Z:(Cex (X)). O

Remark 3.5. Throughout this paper for every f € C(X) we set f* :=
—1V (f A1). Also, the continuous extension of f* over Sy X is called
closure of f and we write f = (f*)%.

Theorem 3.6. The following statements are true for any zero-dimension
space X.

1. X, = intg, X, which is an open subset of X and of BoX.
2. X1, is locally compact subset of X.
3. For each f € Cex(X), X\ Z(f) is an open subset of B X .

Proof. (1) Let x € intg,x X, then there exists an open set U of fpX
such that x € X C U. Regularity of 8pX implies that there exists an
open set V' of BpX such that x € V C clg,x € U. Hence, clg,xV is
compact neighborhood of X and so z € X,
Part(2) from the first part, it easily follows.
(3) X\ Z(f)isopenin X and (X \Z(f))NXcr = X\ Z(f). so X\ Z(f)
is open in X,z and by part (2), X.r, is open in SpX. therefore X \ Z(f)
is open in X and [yX.

O

Corollary 3.7. X, = 0, if and only if BoX \ X be dense in foX, if
and only if Coi(X) = {0}.
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Proof. By Proposition @, Xer, = intg,x X and foX \ Xer = BoX \
intgoxX. Therefore, B()X \ XcL = Cllgox(ﬁoX \ X) So XcL = @ if and
only if BoX = clg,x (FoX \ X) if and only if Sy X \ X be dense in FyX.
Now, we show [pX \ X is dense in X if and only if Cox(X) = {0}.
Suppose X .z, = 0 and By Lemma ﬁ, X\ Z:(Cex (X)) = 0. Therefore
Urec.ex) X\Z(f) = 0 and we have X\ Z(f) = 0, for each f € Cex (X).
So X\Z(f) = 0; thatis Z(f) = X. So f = 0and C.x(X) = {0}. For the
converse, if Cox(X) = {0}, then X1, = X\ Z:(Cex (X)) = X\ Z.({0}) =
(. Hence X, = 0. O

4. PURITY OF THE IDEAL C.k(X) IN COMPACT SPACE AND
C-PESUDOCOMPACT SPACE

We recall from [§] that an ideal I of a commutative ring R is called
pure if for each a € I, there exists b € I such that a = ab.

Lemma 4.1. If I be a pure ideal in C.(X), then
X\ Zo(I) = | Supp(f).

fel

Proof. 1t is clear that X \ Zc(I) = Upe; X\ Z(f) € Ujpes Supp(f).
Conversely, suppose f € I. Since I is pure, we infer that there exists

g € I such that f = fg and g}supp(f) = 1. So for each f € I, Supp(f) C
X\ Z(g). Hence

U Supn(f) € | X\ Z(g) = X\ Z(1).

fel gel
Therefore, X \ Z(I) = Usc; Supp(f). O

The following theorem is the counterpart of [13, Theorem 2.3], and
its proof follows essentially the same line of reasoning. For the sake of
clarity and completeness, we provide the full argument here.

Theorem 4.2. Let I be a Z.-ideal including C.i (X). Then the following
statements are equivalent:

(1) I is pure.
(2) I — OCBOX\(X\ZC(I))

(3) X\ Z.(I) = Ufe[ Supp(f).
Proof. (1) = (2)._Suppose I be a pure, in this case I = O such that

A=NZ(f), see [12]. So foX \ A= Uscr BoX \ Z(f). Since X C o X,
we infer that (30X \ Z(f))NX = BoXN(X\Z(f))NX =X\ Z(f). So

BoX\A = ([ BoX\[Z(NU(BoX\X)] = | (BoX\Z(H)NX = | X\Z (/).

fel feI fel
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. By Corollary @ X \ Z(f) is an open subset of Sy X. So

BOX \ is a closed subset of By X. So I is a pure. Then by
Lemma we have X\ Ze(I) = Uypey Supp(f).
(3) . Let g € I. Then
Supp(g) € | Supp(f) = X\ Z(I) = | X\ Z(f)
fel fer

Since Supp(g) is compact, we infer that Supp(g) C Ui, X \ Z(fi) for
each fi1, fo,..., fn € I. Suppose h = ZfQ Soh el and X\ Z(h) =

Uiy X\Z(f;). Let k € Ce(X) such that k(Supp(g)) =1 and k(Z(h)) =
0. Then g = gk and Z(h) C Z(k). Since I is Z.-ideal, we infer that
k € I and I is a pure ideal. O

Theorem 4.3. Let C.x(X) be a pure ideal. Then X \ Z.(I) is proper
subset X.p, for each proper ideal I of Cex(X).

Proof. We prove the case with the help of reverse proof. Suppose I be
an ideal of Cox(X) such that X \ Z.(I) = X.r. Also let f € Cex(X).
Hence by purity ideal I and Lemma @, X\ Z(I) = Uyper Supp(f). So
Supp(f) € Xer, = X \ Zo(I) and therefore Supp(f) C ;- X \ Z(f;) for

n

each f; € I. Now suppose Y. fZ = g. Since f; € I for each i, we infer
i=1

that g € I and

X\ Z(g) UX\ZfZ

Now, we define function h(x);

f
M) g ,z € X\ Z(g)

0 ,in other points.

Since Supp(f) € X \ Z(g), h € Ce(X) and f = gh, we infer that
I = C.x(X). That it contradicts the assumption. O

Theorem 4.4. Let C.x(X) and Cox (Y) be pure ideals. If X.r, is home-
omorphic to Yer,, then Cox(X) is isomorphic to Cox (Y).

Proof. Let ¢ : X, — Y. be a homeomorphism. For f € C.x(Y),
define f1 = fly,,. Since f:Y — R, the composition

fiocp: Xep — Yo — R
belongs to C.(X.r). By Lemma @, we know
XcL :X\ZC(CCK)7 Y::L :Y\ZC(CCK)
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If feCk(Y), then Y\ Z(f) C Y,r. Since f1 = fly,,, it follows that

Y\Z(f) =Y\ Z(f1).

We claim that

Y\ Z(f) = [ X\ Z(fi09)].

Indeed, let z € X\ Z(f10p). Then (frop)(x) # 0, hence (fop)(x) # 0

and so p(z) € Y \ Z(f). Thus

e[ X\ Z(frop)] CY\ Z(f).
Conversely, if y € Y \ Z(f), then f(y) # 0. Since y € Y.;, and ¢ is a
homeomorphism, there exists x € X, with y = ¢(z). As fi(y) # 0, we
get (f1o¢)(x) # 0, hence x € X \ Z(f1 o). Therefore

Y\ Z(f) S el X\ Z(frop)l.

This proves the claim, and consequently

e IYNZ(N)] =X\ Z(fiogp).
Taking closures in X,j, yields

clx,, (X \ Z(f1 0 9)) = o~ (Supp(f)),

since Supp(f) C Y.z by the purity of Cox(Y).
Now, define g¢ : X — R by

frop(x) z e Xer,
gr(z) = .
0 ;& € X\ ¢~ (Supp(/f))-
Since f1 o p(x) is continuous by Theorem 7.6 in [20], we infer that gy is

continuous. Also, since fi € Cex(Y), ie., [f1(Y)| < N and cly,, (Y \
Z(f1)) is compact, it follows that

[(frop)(Xer)| < [f1(Y)] < N,
and
X\Z(fiop)=¢ HY\Z(f1)) € X\ Z(f).
Hence, g € Cex(X), because every closed subset of a compact space is
compact. Therefore, the support of f,

Supp(f) = clx., (X \ Z(f10¢)),

is compact. Define

¢ : Cer (V) = Cer (X), o(f) =gy
Since ¢ : X, — Y.r is a homeomorphism, we infer that ¢ is a ring
homomorphism. Injectivity. Suppose ¢(f) = 0. Then f; o p(z) = 0 for

every x € X,,, which means X \ Z(fiop) = ¢ 1 (Y \ Z(f)) = 0. Hence
f =0. Thus ¢ is injective.
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Surjectivity. Let h € Co(X). Define g : Y — R by

{hwl(y) Yy € Yer,

0 ,y €Y \ p(Supp(h)).

Then g € C.x(Y), since p(Supp(h)) is compact and Supp(h) C X, by
purity. Moreover,

9(y) =

_ (gop)(z) o€ Xer,
¢(g)(x) = { . = h(z).
0 o € X\ ¢~ (Supp(9)),
Thus @(g) = h, so ¢ is surjective.
Therefore ¢ is a ring isomorphism, and hence C.x (X) = Cox(Y). O

We emphasize that the proof of the following result proceeds in ex-
actly the same manner as the proof of its analogue in C(X); see [3,
Theorem 3.4].

Theorem 4.5. The principal ideal (f) is a projective Co(X)-module if
and only if, Supp(f) is open.

We recall that a topological space X is said to be c-basically discon-
nected if for every function f € C.(X), the support Supp(f) is an open
subset of X.

A commutative ring is called a pp-ring if every principal ideal is a
projective module.

Theorem 4.6. C.(X) is a pp-ring if and only if, X is c-basically dis-
connected.

Proof. Suppose that C.(X) is a pp-ring. Then_every principal ideal of
C.(X) is projective. Therefore, by Theorem .5, the support Supp(f)
is open for each f € C.(X), which is equivalent to X being c-basically
disconnected. This completes the proof, which is also recursive in nature.

O

The following facts are the counterparts of [13, Theorem 4.5, Corol-
lary 4.6, and Corollary 4.7], and their proofs follow exactly the same
arguments as in those results. Nevertheless, we provide a proof here for
the sake of completeness.

Theorem 4.7. Let I be a pure ideal containing Cex (X ). Then X\ Z.(I)
is c-basically disconnected if and only if every principal ideal of I is a
projective C.(X)-module.

Proof. Suppose Y = X \ Z.(I) and Y be c-basically disconnected and
f € I. Since I is pure, we infer that by Lemma @, X\ Z(I) =
UfeI Supp(f). So Supp(f) CY. We consider f; = f‘Y. Hence cly (Y \
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Z(f1)) = Supp(f). Which according to the assumption Y is c-basically
disconnected. So Supp(f) is open in Y and X. Therefore according to
Theorem 1.5, ideal (f) is a projective C,(X)-module.

For the converse, Suppose each principal ideal of I is C.(X)-projective
module. First we show for every f € Cex(Y), Supp(f) is clopen then
using it for every f € C.(Y'), Supp(f) is clopen point. Let f; € Cex(Y)
and define

0 o€ X\ (Y\Z(f))

Since f is Z.-ideal and Supp(f) is compact set containing Y, we infer
that f € I. So (f) is a principal ideal of I. Hence

cy (Y \ Z(f1)) = Supp(f)

is clopen. Now, suppose a € cly (Y \ Z(k)) C Y and k € Cc(Y). The
open set U exists such that U is compact and a € U C U C Y. Since
X is quite regular, we infer that f € C.(X) exists such that f(a) =1

and f(X \U) = 0. Since Supp(f) is compact and containing Y, we infer
that f € I. We know (Y \ Z(f1)) Cecly (Y \ Z(f1))). So

a€cy(Y\Z(f1)) ey (Y \ Z(k)) € cy (Y \ Z(f1)) Nely (Y \ Z(k))
=cy(Y\ Z(h) N Y\ Z(k))
= Cly(Y \ Z(flk?)) g Cly(Y \ Z(k))

But cly (Y \ Z(fik)) is compact. fik € Cox(X), so it is clopen. Hence
cly (Y\Z(k))isclopeninY. SoY = X\ Z.(I) is ¢-basically disconnected.
O

Fa) = {fl(a:) € cy(Y\ Z(f1))

Corollary 4.8. The space X.r, is c-basically disconnected, and Cox(X)
is pure if and only if, for every f € C.x(X), the principal ideal (f) is a
projective C.(X)-module.

Proof. Assume that Supp(f) is clopen. Let g denote the characteristic
function of Supp(f). Then g € C.x(X) and clearly f = fg. O

Corollary 4.9. Let X be a locally compact space. Then the following
conditions are equivalent:

(1) Ce(X) is a pp-ring.

(2) X is c-basically disconnected.

(3) Ewvery principal ideal of Cex (X)) is a projective Co(X)-module.

Proof. (1) = (2). If C.(X) is a pp-ring, then every principal ideal is
projective. By definition, this implies that X is c-basically disconnected,
i.e., Supp(f) is open for each f € C.x(X). Hence, the argument follows
as in Theorem W{.5.
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(2) = (3) and (3) = (1). These implications follow directly from the
definitions. U
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