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1. Introduction

Convexity theory plays cogent roles in various fields of pure and applied
sciences ([4], [8], [11], [15], [16], [18]).
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A function f : K → R is said to be convex in the classical sense if
∀ x, y ∈ K, λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Consequently, this classical concept, due to its close relationship with the
theory of inequalities, has been widely used and generalized by several
authors to derive many useful inequalities in different directions, see [1],
[4].
Among these inequalities, one of the most celebrated, important and
useful results, that has attracted, and continues to attract attention
from researchers in inequalities study in the last few decades, is the
Hermite-Hadamard(H-H)’s inequality, which gives us an estimate, from
below and from above, of the mean value of a convex function. The
inequality

(b− a)f

(
a+ b

2

)
≤
∫ b

a
f(x)dx ≤ (b− a)

f(a) + f(b)

2
, a, b ∈ R, a < b,

(1.1)
holds for any convex functions f defined on R, see, [16].
The double inequality (1.1) is known to be a fundamental result for con-
vex functions. It has a natural geometrical interpretation, various in-
teresting extensions, generalizations, improvements, variations and ap-
plications for uni- and multi-variate convex functions, as well as other
classes of convex functions on classical intervals with recent extensions
to time scales theory. See for example, [8]-[13], [19], [21]-[24].
Recently, new developments of the theory of time scales were introduced
[17], in order to unify and extend the theory of difference and differential
calculus with accuracy and also introduce the delta (∆) and nabla (∇)
time scales calculi (see [5]-[6]). Consequently, the diamond-alpha (⋄α)
dynamic calculus on time scales, which is essentially a linear combina-
tion of the ∆ and ∇ calculi, was developed by Sheng et al. [22]. From
literature, the classical H-H inequality (1.1) has been further extended
and improved to time scales via the ∆, ∇ and ⋄α calculi for convex
functions (see [9],[24] and the references therein).
More recently, different concept of a more generalized class of con-
vex functions, called Fh-convex functions on time scales, including a
more general, combined dynamic calculus, referred to as the diamond-
Fh (⋄(Fh(λ))

s) dynamic calculus, which is a generalization and a unifica-
tion of the ∆, ∇ and ⋄α calculi, were introduced on time scales [11].
The interested reader is referred to [11]-[14] for applications of these
interesting concepts to H-H inequalities on time scales.
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In this article, the reader will find some preliminary results on time
scales in this first section. Next section contains a review of some nec-
essary concepts recently introduced by the authors [11] and proofs of
some further interesting properties on time scales needed for our pur-
pose. Representative applications of the new concepts in the previous
section are shown in section three, by establishing some new integral
inequalities of Hermite-Hadamard type for products of two Fh-convex
functions on time scales. Some direct applications in the field of Econom-
ics are further provided to illustrate our results in section four, followed
by conclusion.

2. On Fh-convexity and ⋄(Fh(λ))
s dynamics on time scales

We recall the concept of Fh-convexity recently introduced by the authors
[11].

Definition 2.1. [11] A mapping f : IT ⊂ T → R is said to be Fh-convex
on time scales if

f(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s

f(x) +

(
1− λ

h(1− λ)

)s

f(y), (2.1)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1, x, y ∈ IT and λx+ (1− λ)y ∈ IT.

Remark 2.2. Let SX(Fh, IT) denote the class of Fh-convex functions
on time scales. Then (2.1) is h-convex(SX(h, IT)) on time scales if
h(λ) = λ

s
s+1 . For s = 0, f is said to be P -convex (SX(P, IT)) on time

scales. Definition 1.1 reduces to MT -convexity(SX(MT, IT)) on time
scales when s = 1, h(λ) = 2

√
λ(1− λ) while it represents mid-point

convexity(SX(J, IT)) on time scales if s = 1, h(λ) = 1, and λ = 1
2 . It is

convex (SX(IT)) on time scales if s = 1 and h(λ) = 1. Thus, if T = R,
f is h-convex, MT -convex, P -convex, mid-point convex and convex on
classical intervals respectively(see [11], [8], [1], [4], [18]).

Note that SX(P, IT) ⊆ SX(h, IT) ⊆ SX(Fh, IT) for 0 ≤ s ≤ 1. If
inequality (1.2) is reversed, then f is Fh-concave, that is, f ∈ SV (Fh, IT).

Now, we introduce some properties of addition and scalar multiplication
which show that SX(Fh, IT) is a linear space for β ≥ 0.
Throughout this paper, let h1, h2 : JT ⊂ T → R be nonzero non negative
functions, where JT is an Fh-convex subset of the real T. h1, h2 have the
property that h(t) > 0 for all t ≥ 0.

Proposition 2.3. Let f, g ∈ SX(Fh, IT), IT and β ≥ 0, x, y ∈ IT,
β ∈ R, then f + g and βf are both Fh-convex on time scales.
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Proof. Since f, g ∈ SX(Fh, IT), then

(f+g)(λx+(1−λ)y) ≤
(

λ

h(λ)

)s

[(f+g)(x)]+

(
1− λ

h(1− λ)

)s

[(f+g)(y)]

and

(βf)(λx+ (1− λ)y) ≤
(

λ

h(λ)

)s

βf(x) +

(
1− λ

h(1− λ)

)s

βf(y),

∀ λ ∈ [0, 1] and s ∈ [0, 1].
If f, g ∈ SV (Fh, IT) and β ≤ 0, then f + g and βf are both Fh-concave
on time scales. □
The following example was given in [11].

Example 2.4. [11] Consider the function f to be a non-negative con-
vex function on IT and h, a non zero non negative function on IT with
h(t) > 0 for all t ≥ 0 satisfying

h(λ) ≤ λ1− 1
m , m ∈ (0, 1], 0 ≤ λ ≤ 1.

Then, we have that

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) ≤
(

λ

h(λ)

)s

f(x)+

(
1− λ

h(1− λ)

)s

f(y),

showing that f ∈ SX(Fh, IT).

Remark 2.5. Example 2.4 implies that all convex functions on time scales
are examples of the generalized class of Fh-convex function (2.1) on
IT provided the condition h(λ) ≤ λ1− 1

m is satisfied. In particular, an
example of such h(λ) is h(λ) = λk for k > 1− 1

m , m ∈ (0, 1], 0 ≤ λ ≤ 1.

Any non-negative concave function f belongs to the class SV (Fh, IT) i.e.
f is Fh-concave provided h satisfies h(λ) ≥ λ1− 1

m for any λ ∈ [0, 1] and
m ∈ (0, 1].

The following new concepts establish properties of two Fh-convex func-
tions on time scales.

Proposition 2.6. Let f : [a, b]T → R for all t ∈ [a, b]T. Then(
λ

h1(λ)

)s

≤
(

λ

h2(λ)

)s

, ∀ λ ∈ [0, 1] and s ∈ [0, 1].

If f ∈ SX(Fh1 , IT), then f ∈ SX(Fh2 , IT); f ∈ SV (Fh1 , IT), then f ∈
SV (Fh2 , IT).

Proof. Suppose f ∈ SX(Fh1 , IT), then for any x, y ∈ JT,

f(λx+ (1− λ)y) ≤
(

λ

h1(λ)

)s

f(x) +

(
1− λ

h1(1− λ)

)s

f(y)
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≤
(

λ

h2(λ)

)s

f(x) +

(
1− λ

h2(1− λ)

)s

f(y),

that is, f ∈ SX(Fh2 , IT). □

Proposition 2.7. Let f and g be similarly ordered on IT, i.e
(f(x)− f(y)) (g(x)− g(y)) ≥ 0, for all x, y ∈ IT. If f ∈ SX(Fh1 , IT)

and g ∈ SX(Fh2 , IT) such that
(

λ
h2(λ)

)s
+
(

1−λ
h2(1−λ)

)s
≤ βs for all s ∈

[0, 1], 0 ≤ λ ≤ 1 with h(λ) = maxλ∈[0,1]{h1(λ), h2(λ)} and β > 0, β ∈
R. Then the product fg ∈ SX(Fβh, IT).

Proof. Let f and g be similarly ordered, then

f(λx+ (1− λ)y)g(λx+ (1− λ)y)

≤
[(

λ

h1(λ)

)s

f(x) +

(
1− λ

h1(1− λ)

)s

f(y)

]
×

[(
λ

h2(λ)

)s

g(x) +

(
1− λ

h2(1− λ)

)s

g(y)

]
≤

(
λ

h(λ)

)2s

(fg)(x) +

(
λ

h(λ)

1− λ

h(1− λ)

)s

f(x)g(y)

+

(
1− λ

h(1− λ)

λ

h(λ)

)s

f(y)g(x) +

(
1− λ

h(1− λ)

)2s

(fg)(y)

≤
(

λ

h(λ)

)2s

(fg)(x) +

(
λ

h(λ)

1− λ

h(1− λ)

)s

[f(x)g(x) + f(y)g(y)]

+

(
1− λ

h(1− λ)

)2s

(fg)(y)

≤
(

λ

βh(λ)

)s

(fg)(x) +

(
1− λ

βh(1− λ)

)s

(fg)(y),

that is, (fg) ∈ SX(Fβh, IT).
Hence, the proof of the assertion of the proposition is complete. □

Remark 2.8. If f and g are oppositely ordered on IT, i.e.,
(f(x)− f(y)) (g(x)− g(y)) ≤ 0, for all x, y ∈ IT. If f ∈ SV (Fh1 , IT), g ∈
SV (Fh2 , IT) and

(
λ

h2(λ)

)s
+
(

1−λ
h2(1−λ)

)s
≥ βs for all s ∈ [0, 1], 0 ≤ λ ≤ 1

with h(λ) = minλ∈[0,1]{h1(λ), h2(λ)} and β > 0, β ∈ R. Then the
product fg ∈ SX(Fβh, IT).

In the paper [11] appears the following generalized diamond-Fh dynamic
calculus on time scales.
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Definition 2.9. [11] A function f : T → R is said to be diamond-Fh

differentiable on Tk
k in the sense of ∆ and ∇, for all t ∈ Tk

k, we write

f
⋄(Fh(λ))

s
(t) =

(
λ

h(λ)

)s

f∆(t) +

(
1− λ

h(1− λ)

)s

f∇(t),

where λ ∈ [0, 1] and s ∈ [0, 1].

If f is defined in t ∈ T such that for any ϵ > 0, there is a neighbourhood
U of m and n ∈ U , with µmn = σ(m)−n and νmn = ρ(m)−n, we have,∣∣∣∣( λ

h(λ)

)s

[f(σ(m))− f(n)]νmn +

(
1− λ

h(1− λ)

)s

[f(ρ(m))− f(n)]µmn

−f
⋄(Fh(λ))

s
(t)µmnνmn

∣∣∣∣∣ < ϵ|µmnνmn|, λ ∈ [0, 1] and s ∈ [0, 1].

Remark 2.10. f
⋄(Fh(λ))

s
(t) reduces to the ⋄α derivative for Fh = α, s = 1

and h(λ) = 1; thus every diamond-α differentiable function on T is
diamond-Fh differentiable but the converse is not true. For Fh = 1, s = 1
and h(λ) = 1, it reduces to the standard ∆ derivative or the standard
∇ derivative for Fh = 0, s = 1 and h(λ) = 1, while it represents a
“weighted dynamic derivative” for Fh ∈ (0, 1), s = 1 and h(λ) = 1.
When Fh = 1

2 , s = 1 and h(λ) = 1, the combined dynamic derivative
gives a centralized derivative formula on any uniformly discrete time
scale T. If f is diamond-Fh differentiable for 0 ≤ s ≤ 1, and 0 ≤
λ ≤ 1, then f is both ∆ and ∇ differentiable. When T = R, then
f∆(t) = f∇(t) = f ′(t) and f

⋄(Fh(λ))
s
(t) becomes the ordinary differential

derivative(see [22], [9], [11] and [20]).

Definition 2.11. [11] The diamond-Fh integral of a function f : T → R
from a to b, where a, b ∈ T is given by;∫ b

a
f(t) ⋄(Fh(λ))

s t =

(
λ

h(λ)

)s ∫ b

a
f(t)∆t+

(
1− λ

h(1− λ)

)s ∫ b

a
f(t)∇t,

(2.2)
∀ λ ∈ [0, 1] and s ∈ [0, 1], such that f has a ∆ and ∇ integral on
[a, b]T.

The permanence properties of diamond-Fh derivative and convexity op-
erations were presented in the following Proposition in [11].

Proposition 2.12. [11] Let f, g ∈ SX(Fh, IT), i.e, these are Fh-convex,
f, g : T → R be diamond-Fh differentiable at t ∈ IT, and c be any
constant. Then f + g, cf, fg, 1g (g ̸= 0), fg (g ̸= 0) are all diamond-Fh

differentiable at t ∈ IT.
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Some new basic properties of the diamond-Fh integral, which are similar
to Theorem 2.2 of [7] and its analogue for the nabla integral, including
Theorem 3.7 of [22] for diamond-α integral on time scales are established
as follows;

Proposition 2.13. Let a, b, c ∈ T, β ∈ R and f, g be continuous, non
negative functions on IT, then

(i)
∫ b
a (f(t)± g(t)) ⋄(Fh(λ))

s t =
∫ b
a f(t) ⋄(Fh(λ))

s t±
∫ b
a g(t) ⋄(Fh(λ))

s t.
(ii)

∫ b
a (βf)t ⋄(Fh(λ))

s t = β
∫ b
a f(t) ⋄(Fh(λ))

s t.
(iii)

∫ b
a (fg)

⋄(Fh(λ))
s
(t) =

∫ b
a f

⋄(Fh(λ))
s
(t)g(t)⋄(Fh(λ))

st

+
(

λ
h(λ)

)s ∫ b
a fσ(t)g∆(t)∆t+

∫ b
a

(
1−λ

h(1−λ)

)s
fρ(t)g∇(t)∇t.

(iv)
∫ b
a f(t) ⋄(Fh(λ))

s t = −
∫ a
b f(t) ⋄(Fh(λ))

s t

(v)
∫ b
a f(t) ⋄(Fh(λ))

s t =
∫ c
a f(t) ⋄(Fh(λ))

s t+
∫ b
c f(t) ⋄(Fh(λ))

s t

(vi)
∫ a
a f(t) ⋄(Fh(λ))

s t = 0.

(vii) If f(t) ≥ 0 for all t ∈ IT, then
∫ b
a f(t) ⋄(Fh(λ))

s t ≥ 0.
(viii) If f(t) ≤ g(t) for all t, then

∫ b
a f(t) ⋄(Fh(λ))

s t ≤
∫ b
a g(t) ⋄(Fh(λ))

s t.

(ix) If f(t) ≥ 0 for all t ∈ IT, then f = 0 if and only if
∫ b
a f(t)⋄(Fh(λ))

s

t = 0.
(x) If |f(t)| ≤ g(t) on [a, b), then |

∫ b
a f(t)⋄(Fh(λ))

s t| ≤
∫ b
a g(t)⋄(Fh(λ))

s

t.
(xi) If in (x), we choose g(t) = |f(t)| on [a, b], we have

|
∫ b
a f(t) ⋄(Fh(λ))

s t| ≤
∫ b
a |f(t)| ⋄(Fh(λ))

s t.

Proof. The proofs are straightforward, so we omit. □

3. Applications to integral inequalities

Here, we show representative applications of Fh-convexity and diamond-
Fh dynamics to establish some new integral inequalities of Hermite-
Hadamard type on time scales.

Theorem 3.1. Let f ∈ SX(Fh1 , IT) and g ∈ SX(Fh2 , IT) be continu-
ous Fh-convex functions, with fg integrable and non negative on [a, b]T,
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where a, b, t ∈ IT, a < b. Then

1

b− a
[

∫ b

a
f(x) ⋄(Fh(λ))

s xg(x)

+

(
λ

h(λ)

)s ∫ b

a
g(x)∆xf(x) +

(
1− λ

h(1− λ)

)s ∫ b

a
g(x)∇xf(x)]

≤ M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ, (3.1)

∀ λ ∈ [0, 1] and s ∈ [0, 1], where M(a, b) = f(a)g(a) + f(b)g(b) and
N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f and g are non negative functions and f ∈ SX(Fh1 , IT),
g ∈ SX(Fh2 , IT), then, by proposition 2.6, we have for all s ∈ [0, 1],
0 ≤ λ ≤ 1,

[f(λa+ (1− λ)b)g(λa+ (1− λ)b)]

≤
(

λ

h1(λ)

)s( λ

h2(λ)

)s

f(a)g(a) +

(
λ

h2(λ)

)s( 1− λ

h2(1− λ)

)s

f(a)g(b)

+

(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s

f(b)g(a)

+

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s

f(b)g(b). (3.2)

Taking the ⋄(Fh(λ))
s integral of (3.2) with respect to λ over [0, 1], we

have ∫ 1

0
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)] ⋄(Fh(λ))

s x

≤ f(a)g(a)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s x

+ f(a)g(b)

∫ 1

0

(
λ

h2(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s x

+ f(b)g(a)

∫ 1

0

(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s

⋄(Fh(λ))
s x

+ f(b)g(b)

∫ 1

0

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s x. (3.3)
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By (2.2) and proposition 2.7, (3.3) becomes

(
λ

h(λ)

)s ∫ 1

0
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)]∆λ

+

(
1− λ

h(1− λ)

)s ∫ 1

0
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)]∇λ

≤ [f(a)g(a) + f(b)g(b)]

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ

+ [f(a)g(b) + f(b)g(a)]

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ.

(3.4)

Substituting x = λa + (1 − λ)b,∆x = (a − b)∆λ;∇x = (a − b)∇λ into
(3.4) gives

1

b− a

∫ b

a
f(x)g(x) ⋄(Fh(λ))

s x

≤ M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ,

which by proposition 2.13(iii) becomes

1

b− a
[

∫ b

a
f(x) ⋄(Fh(λ))

s xg(x)

+

(
λ

h(λ)

)s ∫ b

a
g(x)∆xf(x) +

(
1− λ

h(1− λ)

)s ∫ b

a
g(x)∇xf(x)]

≤ M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ,

that is, the required inequality (3.1). □

Theorem 3.2. Let f ∈ SX(Fh1 , IT) and g ∈ SX(Fh2 , IT) be continuous
non negative Fh-convex functions, a, b, t ∈ IT, with a < b, s ∈ [0, 1] and
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λ ∈ [0, 1], then

4s
[
h1

(
1

2

)]s [
h2

(
1

2

)]s
f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 2

b− a

∫ b

a
f(x)g(x) ⋄(Fh(λ))

s λ

+ M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ,

where M(a, b) = f(a)g(a)+f(b)g(b) and N(a, b) = f(a)g(b)+f(b)g(a).

Proof. Since f and g are Fh-convex by (2.1), then making a change of
variables x = λa+(1−λ)b, y = (1−λ)a+λb and λ = 1

2 , we have that

f

(
a+ b

2

)
g

(
a+ b

2

)
= f

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
g

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
≤

[(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s]
[f(λa+ (1− λ)b) + f((1− λ)a+ λb)]

[g(λa+ (1− λ)b) + g((1− λ)a+ λb)]

= [

(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s

[f(λa+ (1− λ)b)g(λa+ (1− λ)b) + f((1− λ)a+ λb)g((1− λ)a+ λb)

+ f(λa+ (1− λ)b)g((1− λ)a+ λb) + f((1− λ)a+ λb)g((1− λ)a+ λb)].

(3.5)
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By a simple computation, (3.5) becomes

f

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
g

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
≤

[(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s]
[f(λa+ (1− λ)b)g(λa+ (1− λ)b) + f((1− λ)a+ λb)g((1− λ)a+ λb)]

+

(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s

×[(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

f(a)g(a) +

(
1− λ

h1(1− λ)

)s( λ

h2(λ)

)s

f(b)g(b)

]
+

[(
λ

h1(λ)

)s( λ

h2(λ)

)s

f(a)g(b) +

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s

f(b)g(a)

]
+

[(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s

f(a)g(a) +

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

f(b)g(b)

]
+

[(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s

f(a)g(b) +

(
λ

h1(λ)

)s( λ

h2(λ)

)s

f(b)g(a)

]
.

(3.6)

After a simple rearrangement, and using proposition 2.7, one can trans-
form the inequality (3.6) to

f

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
g

(
λa+ (1− λ)b

2
+

(1− λ)a+ λb

2

)
≤

[(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s]
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)

+ f((1− λ)a+ λb)g((1− λ)a+ λb)]

+

[(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s]
[f(a)g(a) + f(b)g(b)][(

λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

+

(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s]
+ [f(a)g(b) + f(b)g(a)][(

λ

h1(λ)

)s( λ

h2(λ)

)s

+

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s]
.
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Then we have

f

(
a+ b

2

)
g

(
a+ b

2

)
≤

[(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s]
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)

+f((1− λ)a+ λb)g((1− λ)a+ λb)]

+

(
1
2

h1(
1
2)

)s( 1
2

h2(
1
2)

)s

M(a, b)

[(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

+

(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s]
+ N(a, b)

[(
λ

h1(λ)

)s( λ

h2(λ)

)s

+

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s]
.

(3.7)

Taking the ⋄(Fh(λ))
s integral of (3.7) over [0, 1], we obtain

4s
[
h1

(
1

2

)]s [
h2

(
1

2

)]s
f

(
a+ b

2

)
g

(
a+ b

2

)
≤

∫ 1

0
[f(λa+ (1− λ)b)g(λa+ (1− λ)b)

+ f((1− λ)a+ λb)g((1− λ)a+ λb)] ⋄(Fh(λ))
s λ

+ M(a, b)∫ 1

0

[(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

+

(
λ

h2(λ)

)s( 1− λ

h1(1− λ)

)s]
⋄(Fh(λ))

s λ

+ N(a, b)∫ 1

0

[(
λ

h1(λ)

)s( λ

h2(λ)

)s

+

(
1− λ

h1(1− λ)

)s( 1− λ

h2(1− λ)

)s]
⋄(Fh(λ))

s λ.

Using property (iii) of proposition 2.13 and taking into accounts x =
λa+(1−λ)b,∆x = (a−b)∆λ,∇x = (a−b)∇λ; y = (1−λ)a+λb,∆y =
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(b− a)∆λ,∇y = (b− a)∇λ in the above inequality, we have

4s
[
h1

(
1

2

)]s [
h2

(
1

2

)]s
f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 2

b− a

∫ 1

0
f(x)g(x) ⋄(Fh(λ))

s

+ M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ. (3.8)

Hence, Theorem 3.2 is proved. □

4. Economic Applications

The theory of time scales is directly applicable in many fields such as
Engineering, Optimization and Economics, in which dynamic processes
can be described by discrete or continuous time systems, variables or
models ([2], [3], [15]).
In Economics, most dynamic optimization problems are developed thus:
a representative consumer seeks to maximize his/her lifetime utility U
subject to certain budgetary constraints A. There is the (constant)
discount factor δ, which satisfies 0 ≤ δ ≤ 1, Cs is consumption during
period s, u(Cs) is the utility the consumer derives from consuming Cs

units of consumption in periods s= 0, 1, 2, ...,T . Utility is assumed to
be concave: u(Cs) has u(Cs)

′>0 and u(Cs)
′′<0. The consumer receives

some income Y in a time period s and decides how much to consume and
save during that same period. If the consumer consumes more today, the
utility or satisfaction he derives from consumption, is forgone tomorrow
as the detterrence. Normally, the consumer is insatiable. However,
each additional unit consumed during the same period generates less
utility than the previous unit consumed within the same period (Law of
diminishing marginal utility, LDMU). This means that the first unit of
consumption of a good or service yields more utility than the second or
subsequent units, with a continuing reduction for greater amounts.
The individual is constrained by the fact that the value function of his
consumption, u(C) must be equal to the value function of his income
Ys, plus the assets/debts, As that he might accrue in a period s. Hence,
As+1 is the amount of assets held at the beginning of period s+1. Also,
A could be positive or negative; the consumer might save for the future
or borrow against the future at interest rate r in any given period s but
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the value of AT , which is the debt accrued with limit or the last period
asset holding, has to be nonnegative (the optimal level is naturally zero).
In order to state the necessary and sufficient condition for optimization
in the formulation of a dynamic optimization problem as that presented
above, it is important to present the simplest form of optimal control
problem in terms of (2.2) as;

max J⋄(Fh(λ))
s [x, u1(t)u2(t)] =

∫ b

a
L(t, x, u1(t)u2(t))⋄(Fh(λ))

st

=

(
λ

h (λ)

)s ∫ b

a
L (t, xσ, (u1(t)u2(t))

σ)∆t

+

(
1− λ

h (1− λ)

)s ∫ b

a
L (t, xρ, (u1(t)u2(t))

σ)∇t, (4.1)

∀ λ ∈ [0, 1] and s ∈ [0, 1], among all pairs (x, u1(t)u2(t)) such that
x∆=f(t, xσ, (u1(t)u2(t))

σ) and x∆=f(t, xρ, (u1(t)u2(t))
σ), together with

appropriate endpoint conditions
u
⋄(Fh(λ))

s ′
(t) =L(t, u1(t)u2(t), p), x(0) =u0, u1(t)u2(t)(T ) free for all

t ∈ [0,T ].

Hence, a simple utility maximization model of household consumption in
Economics for product of two functions can be set up and solved in time
scales settings, using the same intuition as that of the dynamic optimiza-
tion problem presented above, by employing our developed concepts in
sections 2 and 3 as follows. The model assumes a perfect foresight.

Theorem 4.1. The value function of the lifetime utility U⋄Fh
as a prod-

uct of two continuous Fh-concave functions to be maximized subject to
certain constraints is;

Maximize U⋄Fh

=
2

b− a

∫ b

a
u1(C(t))e−δ(t, 0)u2(C(t))e−δ(t, 0)) ⋄Fh

t

≥ 4s
[
h1

(
1

2

)]s [
h2

(
1

2

)]s
f

(
a+ b

2

)
g

(
a+ b

2

)
− M(a, b)

∫ 1

0

(
λ

h1(λ)

)s( 1− λ

h2(1− λ)

)s

⋄(Fh(λ))
s λ

+ N(a, b)

∫ 1

0

(
λ

h1(λ)

)s( λ

h2(λ)

)s

⋄(Fh(λ))
s λ, (4.2)
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subject to the budget constraints

A∇(t) = (rA+ Y − C)(ρ(t)),
A∆(t) = r

1+ rµ(t)A
σ(t) + 1

1+rµ(t)y
σ(t)− 1

1+rµ(t)c
σ(t), (4.3)

a(0) = a0, a(T ) = aT ,

where u1, u2 are Fh-concave u
′
1(C(t1))u

′
2(C(t2)) > 0 and

u
′′
1(C(t1))u

′′
2(C(t2)) < 0), 0 ≤ λ ≤ 1, s ∈ [0, 1], A∆ and A∇ are the

partial delta and nabla derivatives of the budget constraints, e is the
exponential function, r, δ, A, and Y are as defined above.

Proof. Let f(t)g(t) be functions satisfied by the consumption function
path that would maximize lifetime utility
u1(C(t))e−δ(t, 0)u2(C(t))e−δ(t, 0)) in (4.2), then the condition for a
functional of the form∫ b

a
L(t, x, u1(t)u2(t))⋄(Fh(λ))

st

=

(
λ

h (λ)

)s ∫ b

a
L (t, xσ, (u1(t)u2(t))

σ)∆t

+

(
1− λ

h (1− λ)

)s ∫ b

a
L (t, xρ, (u1(t)u2(t))

σ)∇t, (4.4)

for all s ∈ [0, 1] and 0 ≤ λ ≤ 1, to have a local extremum for functions
u1(t)u2(t) and the sufficient condition for an absolute maximum(minimum)
of (4.4) hold.
Since both local and absolute extrema hold, then (4.4) satisfies the suf-
ficient conditions for optimization, which in turn satisfies Theorem 3.2.
To analyze the model (4.2)-(4.3), (4.2) is written in terms of (2.2), stat-
ing the maximum principle and giving the Hamiltonian function for the
model. □

5. conclusion

More interesting properties on the notion of Fh-convexity and ⋄(Fh(λ))
s

dynamics have been established on time scales. Also, representative
applications of these concepts were shown by establishing some new
integral inequalities of H-H type for products of two Fh-convex functions
on time scales. Further, using Fh-convexity and ⋄(Fh(λ))

s dynamics, some
direct applications to Economics were provided to illustrate our results.
It is expected that the ideas and techniques of this paper would further
stimulate research in various fields.
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