Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

https://doi.org/10.22080/cjms.2025.28216.1734

Caspian J Math Sci. 14(2)(2025), 375-393 (RESEARCH ARTICLE)

Characterizing regular posemirings by ordered high-(quasi,bi)-ideals

M. M. Shamivand ¹ and Ahmad Shahsavaran Department of Mathematics, Bo.C., Islamic Azad University, Borujerd, Iran.

ABSTRACT. In this paper, we study the notions of an ordered high-quasi-ideal and ordered high-bi-ideal of a posemiring and show that ordered high-quasi-ideals and ordered high-bi-ideals coincide in regular posemirings. Then we give characterizations of regular posemirings, regular duo-posemirings and left(right) regular posemirings by their high-quasi-ideals and high-bi-ideals.

Keywords: Posemiring, Regular, High-quasi-ideal, High-bi-ideal.

2000 Mathematics subject classification: 05C20, 05C30.

1. Introduction

The concept of quasi-ideal for rings was introduced in 1953 by Steinfeld [13, 14, 15]. Iseki [5] introduced this concept for semirings without zero and studied some properties. Donges [3] studied quasi-ideals of a semiring with zero and connections between left(right) ideals, bi-ideals and quasi-ideals. Later, Shabir et al. [12] have studied some properties of quasi-ideals, using quasi-ideals to characterize regular and intra-regular semirings and regular duo-semirings. As a generalization of quasi-ideals of semirings the quasi-ideals of Γ -semirings were investigated by many authors: see [1, 2, 6]. In 2011, the notion of an ordered semiring (posemiring) was introduced by Gan and Jiang [4] as a semiring with a partially ordered relation on the semiring such that the relation is compatible

How to Cite: Shamivand, Mohammadmahdi; Shahsavaran, Ahmad. Characterizing regular posemirings by ordered high-(quasi,bi)-ideals, Casp.J. Math. Sci.,14(2)(2025), 375-393.

This work is licensed under a Creative Commons Attribution 4.0 International License.

¹Corresponding author: shamivand53@iau.ir

Received: 16 December 2024 Revised: 17 Feruary 2025 Accepted: 04 June 2025

Copyright © 2025 by University of Mazandaran. Subbmitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

to the operations of the semirings and the concept of a left(right) ordered ideal, a minimal ordered ideal, and a maximal ordered ideal was defined. The Mandal [9] studied fuzzy ideals in a posemiring with the least element zero and gave a characterization of regular posemirings by their fuzzy ideals. In this paper, the concept of high-quasi-ideal, high-bi-ideal in posemirings and some new characterizations for regular posemirings are presented. A posemiring is a system $(S,+,\cdot,\leq)$ consisting of a non-empty set S, two binary operations $+,\cdot$ on S and a partial order ralation on S such that $(S,+,\cdot)$ is a semiring (i.e. an algebraic structure similar to a ring but without the requirement that each element must have an additive inverse), and for every $a,b,x\in S$ the following conditions are satisfied:

- (i) If $a \le b$, then $a + x \le b + x$ and $x + a \le x + b$,
- (ii) If $a \le b$, then $a \cdot x \le b \cdot x$ and $x \cdot a \le x \cdot b$.

As usual, we omit the operation "·" between every two elements $a,b \in S$ and write ab provided that no confusion arises. A posemiring S is said to be additively commutative if a+b=b+a for all $a,b \in S$. An element $0 \in S$ is said to be an absorbing zero if 0a=0=a0 and a+0=a=0+a for all $a \in S$. Throughout this paper, the word posemiring shall mean an additively commutative posemiring with an absorbing zero 0 unless otherwise stated. For subposets A and B of a posemiring S, let $AB := \{ab \mid a \in A, b \in B\}$, $\{A\} := \{s \in S \mid s \leq a\}$ for every $a \in S$. Also, for subposets A and B of a posemiring S, we denote:

```
A + B = \{a + b \mid a \in A, b \in B\},\
\Sigma A = \{\Sigma_{i \in I} a_i \in S \mid a_i \in A \text{ and } I \text{ is a finite subset of } \mathbb{N}\},\
\Sigma AB = \{\Sigma_{i \in I} a_i b_i \mid a_i \in A, b_i \in B \text{ and } I \text{ is a finite subset of } \mathbb{N}\},\
\mathbb{N}a = \Sigma \{a\}.
```

If $A = \{a\}$, then we denote $\Sigma A = \Sigma a$. By a subposemiring of a posemiring S we mean a subsemiring of S which is also a subposet under the inherited order relation of S.

Remark 1.1. For a posemiring S and non-empty subsets A,B of S, we have the following:

- (i) $\Sigma(A) \subseteq (\Sigma A)$, (ii) $\Sigma(\Sigma A) = \Sigma A$, (iii) $A(\Sigma B) \subseteq \Sigma AB$ and $(\Sigma A)B \subseteq \Sigma AB$,
- (iv) $\Sigma(A\Sigma B) \subseteq \Sigma AB$ and $\Sigma(\Sigma A)B \subseteq \Sigma AB$, (v) $\Sigma(A+B) = \Sigma A + \Sigma B$.

We note that, for every $A \subseteq S$, $\Sigma A = A$ if and only if $A + A \subseteq A((A, +))$ is a subsemigroup of (S, +). (See [7, 8])

Recall from [10, 11, 12] that If S is a posemiring, then a non-empty subset Q of S is called a quasi-ideal of S if $Q + Q \subseteq Q$, $(\Sigma SQ) \cap (\Sigma QS) \subseteq Q$ and $(Q] \subseteq Q$. Also, a non-empty subset B of a posemiring S is called a bi-ideal of S if $B + B \subseteq B$, $\Sigma BSB \subseteq B$ and $(B] \subseteq B$.

By a left ordered ideal(right ordered ideal) of a posemiring S, we mean a non-empty subset A of S if the following conditions are satisfied(see[4]):

- (1) A is a left ideal(right ideal) of S,
- (2) If $x \le a$ for some $a \in A$ then $x \in A(i.e., A = (A))$.

We call A an ordered ideal if it is both left ordered ideal and right ordered ideal of S.

The right ordered ideal, left ordered ideal, ideal, quasi-ideal and bi-ideal generated by a subset A of a posemiring S will be denoted by R(A), L(A), L(A), L(A), L(A), L(A), and L(A), respectively. If L(A), L(A)

If S is a posemiring, then $R(a) = (\Sigma a + \Sigma aS]$, $L(a) = (\Sigma a + \Sigma Sa]$, $I(a) = (\Sigma a + \Sigma Sa + \Sigma SaS + \Sigma SaS]$, $Q(a) = (\Sigma a + ((\Sigma aS) \cap (\Sigma Sa)))$ and $B(a) = (\Sigma a + \Sigma aS + \Sigma aSa)$.

Here we generalize the notions of bi-ideal and quasi-ideal as high-bi-ideal and high-quasi-ideal, respectively. Firstly, for each subset A of a posemiring S we denote:

$$(A)^* := \{ s \in S \mid s \le a^n \text{ for some } a \in A \text{ and } n \in \mathbb{N} \}.$$

Let A and B be non-empty subsets of posemiring S. Clearly, $A \subseteq (A]^*$, $((A]^*]^* = (A]^*$, $(A \cap B]^* \subseteq (A]^* \cap (B]^*$ and $(A \cup B)^* = (A]^* \cup (B)^*$ and $A \subseteq B$ implies that $(A]^* \subseteq (B]^*$ as well.

If S has an identity then we have the following Lemmas:

Lemma 1.2. For a posemiring S and non-empty subsets A, B and C of S, we have:

- (i) $\Sigma(A)^* \subseteq (\Sigma A)^*$,
- (ii) $\Sigma(\Sigma A) = \Sigma A$,
- (iii) $A(\Sigma B) \subseteq \Sigma AB$ and $(\Sigma A)B \subseteq \Sigma AB$,
- (iv) $\Sigma(A\Sigma B) \subseteq \Sigma AB$ and $\Sigma(\Sigma A)B \subseteq \Sigma AB$,
- (v) $\Sigma(A+B) = \Sigma A + \Sigma B$,
- (vi) $A(B)^* \subseteq (A)^*(B)^* \subseteq (AB)^*$ and $(A)^*B \subseteq (A)^*(B)^* \subseteq (AB)^*$,
- (vii) $A + (B)^* \subseteq (A)^* + (B)^* \subseteq (A+B)^*$ and $(A)^* + B \subseteq (A)^* + (B)^* \subseteq (A+B)^*$,
- (viii) $A(B+C)^* \subseteq (AB+AC)^*$ and $(A+B)^*C \subseteq (AC+BC)^*$.

Lemma 1.3. Let S be a posemiring and A be a non-empty subposet of S. If $A \subseteq (\Sigma A^2 + \Sigma ASA)^*$ then, $\Sigma A^2 \subseteq (\Sigma ASA)^*$.

Proof. Assume that $A \subseteq (\Sigma A^2 + \Sigma ASA)^*$ then,

$$\Sigma A^{2} \subseteq \Sigma(\Sigma A^{2} + \Sigma ASA]^{*}A$$

$$\subseteq \Sigma((\Sigma A^{2})A + (\Sigma ASA)A]^{*}$$

$$\subseteq \Sigma(\Sigma A^{3} + \Sigma ASA)^{*}$$

$$\subseteq (\Sigma(\Sigma A^{3} + \Sigma ASA)]^{*}$$

$$= (\Sigma(\Sigma A^{3}) + \Sigma(\Sigma ASA)]^{*}$$

$$= (\Sigma A^{3} + \Sigma ASA)^{*}$$

$$= (\Sigma A^{3} + \Sigma ASA)^{*}$$

$$= (\Sigma AAA + \Sigma ASA)^{*}$$

$$\subseteq (\Sigma ASA + \Sigma ASA)^{*}$$

$$= (\Sigma ASA)^{*}.$$

Lemma 1.4. Let A be a nonempty subset of a posemiring S then,

- (i) $(\Sigma SA)^*$ is a left ordered ideal of S,
- (ii) $(\Sigma AS)^*$ is a right ordered ideal of S,
- (iii) $(\Sigma SAS)^*$ is an ordered ideal of S.

Proof. (i) Let $x, y \in (\Sigma SA]^*$ then $x \leq a^m$ and $y \leq b^n$ for some $a, b \in \Sigma SA$ and $m, n \in \mathbb{N}$ and so $x + y \leq a^m + b^n \leq (a + b)^{m+n}$. By considering $a + b = c \in \Sigma SA$ and $m + n = k \in \mathbb{N}$ we have, $x + y \in (\Sigma SA]^*$. Also, $S(\Sigma SA]^* \subseteq (S\Sigma SA]^* \subseteq (\Sigma SA)^*$ and $S(\Sigma SA)^* \subseteq (\Sigma SA)^*$ and $S(\Sigma SA)^* \subseteq (\Sigma SA)^*$ and $S(\Sigma SA)^* \subseteq (\Sigma SA)^*$. Hence, $S(\Sigma SA)^*$ is a left ordered ideal of S.

(ii) and (iii) can be proved similar to (i).

Corollary 1.5. Let S be a posemiring then for every $a \in S$,

- (i) $(Sa)^*$ is a left ordered ideal of S,
- (ii) $(aS)^*$ is a right ordered ideal of S,
- (iii) $(\Sigma SaS)^*$ is an ordered ideal of S.

Lemma 1.6. Let A be a nonempty subset of a posemiring S then,

- (i) $L(A) = (\Sigma A + \Sigma S A)^*$,
- (ii) $R(A) = (\Sigma A + \Sigma AS)^*$,
- (iii) $I(A) = (\Sigma A + \Sigma SA + \Sigma AS + \Sigma SAS)^*$.

Proof. (i) Since S has an absorbing zero then for every $a \in A$, $a = a + 0 \in \Sigma A + \Sigma SA \subseteq (\Sigma A + \Sigma SA]^*$. Hence, $A \subseteq (\Sigma A + \Sigma SA]^*$. Let $x, y \in (\Sigma A + \Sigma SA]^*$ then $x \leq a^m$ and $y \leq b^n$ for some $a, b \in \Sigma A + \Sigma SA$ and $m, n \in \mathbb{N}$. Thus $a = a_1 + b_1$ and $b = a_2 + b_2$ for some $a_1, a_2 \in \Sigma A$ and $b_1, b_2 \in \Sigma SA$. It is easy to show that $a_1 + a_2 \in \Sigma A$ and $b_1 + b_2 \in \Sigma SA$. Clearly, $x + y \leq a^m + b^n \leq (a + b)^{m+n}$. By considering $a + b = c \in \Sigma A + \Sigma SA$ and $m + n = k \in \mathbb{N}$ we have, $x + y \in (\Sigma A + \Sigma SA]^*$. Also, $S(\Sigma A + \Sigma SA]^* \subseteq (S(\Sigma A + \Sigma SA)]^* \subseteq (S\Sigma A + S\Sigma SA)^* \subseteq (\Sigma SA + \Sigma SA)^* \subseteq (\Sigma SA + \Sigma SA)^*$. Since $((\Sigma A + \Sigma SA)^*)^* = (\Sigma A + \Sigma SA)^*$ so L is a left ordered ideal of S. Let K be a left ordered ideal of S containing S so S is a left ordered ideal of S. Hence S is the smallest left ordered ideal of S containing S containing S is the smallest left ordered ideal of S containing S containing S containing S is the smallest left ordered ideal of S containing S contain

(ii) and (iii) can be proved similar to (i).

As a special case of Lemma 1.6, if $A = \{a\}$ then we have the following corollary: Let S be a posemiring then for every $a \in S$,

- (i) $L(a) = (Na + Sa)^*$,
- (ii) $R(a) = (Na + aS)^*$,
- (iii) $I(a) = (\mathbb{N}a + Sa + aS + \Sigma SaS)^*$.

An element e of a posemiring S is said to be an identity if ea = a = ae for all $a \in S$. If S has an identity, then we denote 1 as the identity of S. It is not difficult to show that if S has an identity, then $L(A) = (\Sigma SA)^*$, $R(A) = (\Sigma AS)^*$ and $I(A) = (\Sigma SAS)^*$ for every $A \subseteq S$. In particular, we have $L(a) = (Sa)^*$, $R(a) = (aS)^*$ and $I(a) = (\Sigma SaS)^*$ for every $a \in S$.

2. Ordered high- quasi- ideal in posemirings

We present a notion of an ordered high- quasi- ideal and an ordered high- biideal of a posemiring. Then, in a posemiring with an identity, we show that every ordered high- quasi- ideal can be expressed as an intersection of an ordered left ideal and an ordered right ideal.

Definition 2.1. Suppose that $(S, +, ., \leq)$ be a posemiring and let (Q, +), (B, +) and (I, +) are subposemirings of (S, +) then Q is said to be an *ordered high-quasi-ideal* of S if the following conditions are satisfied:

- (i) $(\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq Q$,
- (ii) If $x \leq q^n$ for some $q \in Q$ and $n \in \mathbb{N}$ then $x \in Q$ i.e., $Q = (Q)^*$. Also,

B is said to be an *ordered high- bi- ideal* of S if the following conditions are satisfied:

- (i) $B + B \subseteq B$ and $\Sigma BSB \subseteq B$,
- (ii) If $x \leq b^n$ for some $b \in B$ and $n \in \mathbb{N}$ then $x \in B$ (i.e., $B = (B)^*$). Also,

I is said to be an *ordered high-interior-ideal* of S if the following conditions are satisfied:

- (i) $I + I \subseteq I$ and $\Sigma SIS \subseteq I$,
- (ii) If $x \leq i^n$ for some $i \in B$ and $n \in \mathbb{N}$ then $x \in I$ (i.e., $I = (I)^*$).

We give some characterizations of regular posemirings using their ordered high-bi-ideals and ordered high-quasi-ideals. Clearly, every one-sided ordered ideal of a posemiring S is an ordered high-quasi-ideal of S. For a subset A of a posemiring S, we denote the ordered high-quasi-ideal and ordered high-bi-ideal generated by A by $Q^*(A)$ and $B^*(A)$, respectively. If $A = \{a\}$, we denote $Q^*(A)$ and $B^*(A)$ by $Q^*(a)$ and $B^*(a)$, respectively.

Lemma 2.2. Let S be a posemiring and A be a nonempty subset of S then,

$$Q^*(A) = (\Sigma A + ((\Sigma SA]^* \cap (\Sigma AS]^*)]^*.$$

Proof. Let $Q = (\Sigma A + ((\Sigma SA]^* \cap (\Sigma AS]^*)]^*$. Since S has an absorbing zero, we have $a = a + 0 \in \Sigma A + ((\Sigma SA]^* \cap (\Sigma AS]^*) \subseteq Q$ for every $a \in A$ hence $A \subseteq Q$. Let $x, y \in Q$ then, $x \leq a^m$ and $y \leq b^n$ for some $a, b \in \Sigma A + ((\Sigma SA]^* \cap (\Sigma AS]^*)$ and $m, n \in \mathbb{N}$. Thus $a = a_1 + b_1$ and $b = a_2 + b_2$ for some $a_1, a_2 \in \Sigma A$ and $b_1, b_2 \in (\Sigma SA]^* \cap (\Sigma AS]^*$. It is clear that $x + y \leq a^m + b^n \leq (a + b)^{m+n}$. By considering $a + b = c \in \Sigma A + ((\Sigma SA]^* \cap (\Sigma AS]^*)$ and $m + n = k \in \mathbb{N}$ we have, $x + y \in (\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*))^*$ and so, $x + y \in Q$. We have,

```
(\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq (\Sigma SQ)^*
= (\Sigma S(\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*))^*]^*
\subseteq (\Sigma S(\Sigma A + (\Sigma SA)^*)^*]^*
\subseteq (\Sigma (S\Sigma A + S(\Sigma SA)^*)^*]^*
\subseteq (\Sigma (\Sigma SA + (\Sigma SA)^*)^*]^*
\subseteq (\Sigma (\Sigma SA + \Sigma SA)^*]^*
\subseteq (\Sigma (\Sigma SA + \Sigma SA)^*]^*
\subseteq (\Sigma (\Sigma SA)^*]^*
\subseteq ((\Sigma SA)^*)^*
= (\Sigma SA)^*.
```

Similarly, we can show that $(\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq (\Sigma AS)^*$. Thus, $(\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq (\Sigma SA)^* \cap (\Sigma AS)^* \subseteq \Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*) \subseteq Q$. Since $(Q)^* = Q$, we obtain that Q is an ordered high- quasi- ideal of S containing A. Let Q' be an ordered high- quasi- ideal of S containing S. We have, $(\Sigma SA)^* \cap (\Sigma AS)^* \subseteq (\Sigma SQ')^* \cap (\Sigma Q'S)^* \subseteq Q'$. So, $\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*) \subseteq Q'$. Hence, $Q = (\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*)^* \subseteq Q'$. Therefore, Q is the smallest ordered high- quasi- ideal of S containing S.

Let S be a posemiring and $A = \{a\}$ be a subset of S then, $Q^*(a) = (\mathbb{N}a + ((\Sigma Sa)^* \cap (\Sigma aS)^*))^*.$

It is clear that every left ordered ideal (right ordered ideal and ordered ideal) of a posemiring S is an ordered high- quasi- ideal of S. Moreover, each ordered high- quasi- ideal of S is a subposemiring of S; indeed, $QQ \subseteq (QQ)^* \subseteq (SQ)^* \cap (QS)^* \subseteq (\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq Q$.

Example 2.3. Let $S = \{a, b, c, d\}$. We define binary operations + and . on S by the following equations:

+	a	b	c	d
a	a	b	c	d
b	b	b	b	b
c	c	b	c	d
d	d	b	d	d

•	a	b	c	d
a	a	a	a	a
b	a	b	b	b
c	a	c	c	c
d	a	b	b	b

then (S, +, .) is an additively commutative semiring with an absorbing zero a. We define a binary ordering relation on S by:

$$\leq := \{(a, a), (b, b), (c, c), (d, d), (b, d)\}.$$

We give the covering relation and the figure of S by:

$$\prec := \{(b,d)\}$$

now $(S, +, ., \leq)$ is a posemiring. Let $Q = \{a, b\}$ we have $(\Sigma SQ)^* \cap (\Sigma QS)^* = \{a, b, c\} \cap \{a, b\} = Q$ and $(Q)^* = Q$. Hence, Q is an ordered high- quasi- ideal of S but is not a left ordered ideal of S, since $SQ = \{a, b, c\} \nsubseteq Q$.

Lemma 2.4. Let S be a posemiring and $\{Q_i \mid i \in I\}$ be a family of ordered high-quasi- ideals of S. Then $\bigcap_{i \in I} Q_i$ is an ordered high- quasi- ideal of S.

Theorem 2.5. The intersection of a left ordered ideal L and a right ordered ideal R of a posemiring S is an ordered high- quasi- ideal of S.

Proof. $L \cap R$ is a subsemigroup of (S, +) so by Lemma 1.2 we have

$$(\Sigma S(L \cap R)]^* \cap (\Sigma (L \cap R)S]^* \subseteq (\Sigma S(L \cap R)]^*$$

$$= (\Sigma (SL \cap SR)]^*$$

$$\subseteq (\Sigma SL]^*$$

$$\subseteq L,$$

$$(\Sigma S(L \cap R)]^* \cap (\Sigma (L \cap R)S]^* \subseteq (\Sigma (L \cap R)S]^*$$

$$= (\Sigma (LS \cap RS)]^*$$

$$\subseteq (\Sigma RS)^*$$

$$\subseteq R.$$

Hence, $(\Sigma S(L \cap R))^* \cap (\Sigma (L \cap R)S)^* \subseteq L \cap R$. Let $s \in S$ such that $s \leq x^n$ for some $x \in L \cap R$ and $n \in \mathbb{N}$. Then, $s \in (L \cap R)^* \subseteq (L)^* \cap (R)^* = L \cap R$.

Let S be a posemiring then, the following statements hold:

- (i) $(\Sigma SA)^* \cap (\Sigma AS)^*$ is an ordered high- quasi- ideal of S, for every $A \subseteq S$,
- (ii) $(\Sigma Sa)^* \cap (\Sigma aS)^*$ is an ordered high- quasi- ideal of S, for every $a \in S$.

Proof. (i) By Lemma 1.3 $(\Sigma SA)^*$ and $(\Sigma AS)^*$ are a left and a right ordered ideal of S, respectively. Then by Theorem 2.5 $(\Sigma SA)^* \cap (\Sigma AS)^*$ is an ordered high-quasi- ideal of S.

(ii) It is a particular case of (i).

Now, we will show that the converse of Theorem 2.5 is true if S contain an identity by the following theorem:

Theorem 2.6. Let S be a posemiring with identity then, every ordered high-quasi-ideal Q of S can be written in the form $Q = R \cap L$ for some right ordered ideal R and left ordered ideal L of S.

Proof. Assume S has an identity and Q be an ordered high- quasi- ideal of S then, $R(Q) = (\Sigma QS)^*$ and $L(Q) = (\Sigma SQ)^*$. Clearly, $Q \subseteq R(Q) \cap L(Q)$ and $R(Q) \cap L(Q) = (\Sigma QS)^* \cap (\Sigma SQ)^* \subseteq Q$. Hence, $Q = R(Q) \cap L(Q)$.

3. Regularity of Posemirings

In this section, we show that in regular posemirings the converse of Theorem 2.5 is true and ordered high- quasi- ideals concide with ordered high- bi- ideals. Then we give characterizations of regular posemirings, regular duo-posemirings, left regular and right regular posemirings by their ordered high- quasi- ideals.

Definition 3.1. An element a of a posemiring S is said to be regular if $a \le axa$ for some $x \in S$. A posemiring S is said to be regular if every element $a \in S$ is regular. (see[9])

The following lemma is characterizations of regular posemiring which directly follows from Definition 3.1.

Lemma 3.2. Let S be a posemiring then the following statements are equivalent:

- (i) S is regular,
- (ii) $A \subseteq (\Sigma ASA)^*$ for every $A \subseteq S$,
- (iii) $a \in (aSa]^*$ for every $a \in S$.

Now, we will show that the converse of Theorem 2.5 is true in regular posemirings.

Theorem 3.3. Every ordered high- quasi- ideal of a regular posemiring S can be written in the form $Q = R \cap L$ for some right ordered ideal R and left ordered ideal L of S.

Proof. Let Q be an ordered high- quasi- ideal of S. By Lemma 1.6, we have $R(Q) = (\Sigma Q + \Sigma Q S]^*$ and $L(Q) = (\Sigma Q + \Sigma S Q]^*$. Obviously, $Q \subseteq R(Q) \cap L(Q)$. Let, $q \in Q$ since S is regular so $q \in (qSq]^* \subseteq (QSQ]^* \subseteq (QS]^* \subseteq (\Sigma Q S]^*$. So, $Q \subseteq (\Sigma Q S)^*$. Since $Q + Q \subseteq Q$ then $\Sigma Q = Q$. Obviously $(\Sigma Q S)^* \subseteq (\Sigma Q + \Sigma Q S)^* = (Q + \Sigma Q S)^* \subseteq ((\Sigma Q S)^* + \Sigma Q S)^* \subseteq (\Sigma Q S)^*$ which implies that $R(Q) = (\Sigma Q S)^*$. Similarly, $L(Q) = (\Sigma S Q)^*$. Hence, $R(Q) \cap L(Q) = (\Sigma Q S)^* \cap (\Sigma S Q)^* \subseteq Q$. Therefore, $Q = R(Q) \cap L(Q)$.

Theorem 3.4. Every ordered high- quasi- ideal of a posemiring S is an ordered high- bi- ideal of S.

Proof. Let Q be an ordered high- quasi- ideal of S then $\Sigma QSQ \subseteq \Sigma QS \subseteq (\Sigma QS)^*$ and $\Sigma QSQ \subseteq \Sigma SQ \subseteq (\Sigma SQ)^*$. So $\Sigma QSQ \subseteq (\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq Q$. Hence, Q is an ordered high- bi- ideal of S.

By following example we show that converse of the Theorem 3.4 is not generally true.

Example 3.5. Let $S = \{a, b, c, d, e\}$. We define binary operations + and . on S by the following equations

+	a	b	c	d	e
a	a	b	c	d	e
b	b	b	d	d	d
c	c	d	d	d	d
d	d	d	d	d	d
e	e	d	d	d	e

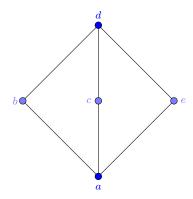
•	a	b	c	d	e
a	a	a	a	a	a
b	a	a	a	a	a
c	a	a	b	b	b
d	a	a	b	b	b
e	a	a	b	b	b

then (S, +, .) is an additively commutative semiring with an absorbing zero a. We define a binary ordering relation on S by

$$\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, e), (a, d), (b, d), (c, d), (e, d)\}.$$

We give the covering relation and the figure of S by:

$$\prec := \{(a, b), (a, c), (a, e), (b, d), (c, d), (e, d)\}$$



now, $(S,+,.,\leq)$ is a posemiring but is not regular, since $d \nleq dxd$ for every $x \in S$. Let $B = \{a,e\}$ then B is an ordered high- bi- ideal but not an ordered high- quasi- ideal of S, since, $(\Sigma SB)^* \cap (\Sigma BS)^* = \{a,b\} \nsubseteq B$.

We show that in regular posemirings, ordered high- bi- ideals and ordered highquasi- ideals are coincide by the following theorem:

Theorem 3.6. Let S be a regular posemiring then, ordered high- bi- ideals and ordered high- quasi- ideals coincide in S.

Proof. By the Theorem 3.4, every ordered high- quasi- ideal of S is an ordered high- bi- ideal of S. We show that every ordered high- bi- ideal of S is an ordered high- quasi- ideal of S. Let B be an ordered high- bi- ideal of S and $A \in (\Sigma SB)^* \cap (\Sigma BS)^*$. By Lemma 3.2 and Lemma 1.2, we obtain $A \in (ASA)^* \subseteq ((\Sigma BS)^*S(\Sigma SB)^*)^* \subseteq ((\Sigma BSS)^*S(\Sigma SB)^*S(\Sigma SB)^*)^* \subseteq ((\Sigma BSS)^*S(\Sigma SB)^*S(\Sigma SB)^*S($

Theorem 3.7. Let S be a regular posemiring then, the following statements are equivalent:

- (i) S is regular,
- (ii) $(\Sigma RL)^* = R \cap L$ for every right ordered ideal R and left ordered ideal L of S,
 - (iii) $B = (\Sigma BSB)^*$ for every ordered high- bi- ideal B of S,
 - (iv) $Q = (\Sigma QSQ)^*$ for every ordered high- quasi- ideal Q of S.

Proof. (i) \Longrightarrow (ii) suppose S be a posemiring. Let R and L be a right ordered ideal and a left ordered ideal of S, respectively. So $(\Sigma RL)^* \subseteq (\Sigma R)^* = R$ and $(\Sigma RL)^* \subseteq (\Sigma L)^* = L$. Hence, $(\Sigma RL)^* \subseteq R \cap L$. Let $a \in R \cap L$, since S is regular, $a \leq axa$ for some $x \in S$. Obviously, $a \in (aSa)^* = ((a)Sa)^* \subseteq (RL)^* \subseteq (\Sigma RL)^*$. Therefore, $(\Sigma RL)^* = R \cap L$.

(ii) \Longrightarrow (iii) Let B be an ordered high- bi- ideal of S. It is clear that $(\Sigma BSB)^* \subseteq B$. By assumption (ii) we have $B \subseteq R(B) \cap L(B) = (\Sigma R(B)L(B))^*$. By Lemma 1.2 and Lemma 1.3, we have,

$$\begin{split} B &\subseteq (\Sigma B + \Sigma BS]^* \cap (\Sigma B + \Sigma SB]^* \\ &= (\Sigma((\Sigma B + \Sigma BS)^*(\Sigma B + \Sigma SB)^*)]^* \\ &\subseteq (\Sigma((\Sigma B + \Sigma BS)(\Sigma B + \Sigma SB))]^* \\ &\subseteq (\Sigma(\Sigma B(\Sigma B + \Sigma SB) + \Sigma BS(\Sigma B + \Sigma SB))]^* \\ &\subseteq (\Sigma(\Sigma B^2 + \Sigma BSB + \Sigma BSB + \Sigma BSSB)]^* \\ &\subseteq (\Sigma(\Sigma B^2 + \Sigma BSB)]^* \\ &= (\Sigma(\Sigma B^2) + \Sigma(\Sigma BSB)]^* \\ &= (\Sigma(\Sigma B^2) + \Sigma(\Sigma BSB)^* \\ &\subseteq ((\Sigma BSB)^* + \Sigma BSB)^* \\ &\subseteq (\Sigma BSB)^* \end{split}$$

- (iii) \Longrightarrow (iv) It is obvious according to the Theorem 3.4.
- (iv) \Longrightarrow (i) Let $a \in S$ then $Q^*(a) = (Q^*(a)SQ^*(a)]^*$. By Corollary 2 and Lemma 1.2 we have

$$a \in (\mathbb{N}a + ((Sa]^* \cap (aS]^*)]^*$$

$$= (\Sigma((\mathbb{N}a + ((Sa]^* \cap (aS]^*)]^*S(\mathbb{N}a + ((Sa]^* \cap (aS]^*)]^*)]^*$$

$$\subseteq (\Sigma((\mathbb{N}a + (aS]^*]^*S(\mathbb{N}a + (Sa]^*)]^*$$

$$\subseteq (\Sigma((\mathbb{N}a + aS)^*S(\mathbb{N}a + Sa]^*)]^*$$

$$\subseteq (\Sigma(((\mathbb{N}a + aS)S)^*(\mathbb{N}a + Sa]^*)]^*$$

$$\subseteq (\Sigma((aS]^*(\mathbb{N}a + Sa]^*)]^*$$

$$\subseteq (\Sigma(aS(\mathbb{N}a + Sa)))^*$$

$$\subseteq (\Sigma(aS(\mathbb{N}a + Sa)))^*$$

$$\subseteq (\Sigma(aSa)^*$$

$$= (aSa)^*.$$

Therefore, by Lemma 3.2, S is regular.

Theorem 3.8. Let S be a regular posemiring then the following statements are hold:

- (i) Every ordered high- quasi- ideal Q of S can be written in the form $Q = R \cap L = (RL)^*$ for some right ordered ideal R and left ordered ideal L of S,
 - (ii) $(Q^2)^* = (Q^3)^*$ for every ordered high- quasi- ideal Q of S.

Proof. (i) It is obvious by Theorem 3.3 and 3.7.

(ii) Let Q be an ordered high- quasi- ideal of S. Clearly, $((QQ)Q)^* \subseteq (QQ)^*$. Let $x \in (QQ)^*$ then $x \leq (q_1q_2)^n$ for some $q_1, q_2 \in Q$ and $n \in \mathbb{N}$ Since S is regular there exist $s \in S$ where $x \leq (q_1q_2)^n \leq (q_1q_2)^n s(q_1q_2)^n \leq q_1^n q_2^n sq_1^n q_2^n \leq (q_1q_2sq_1q_2)^n$ such that $q_1q_2sq_1q_2 \in QQSQQ$. Hence, $x \in (Q(QSQ)Q)^* \subseteq (QQQ)^*$. Therefore, $(Q^2)^* = (Q^3)^*$.

Definition 3.9. A posemiring S is said to be a *duo-posemiring* if every one-sided(right or left) ordered ideal of S is an ordered ideal of S.

We note that every multiplicatively commutative posemiring is a duo-posemiring, but the converse is not generally true.

Example 3.10. Let $S = \{a, b, c, d, e\}$. We define binary operations + and . on S by the following equations:

+	a	b	c	d	e
a	a	b	c	d	e
b	b	c	c	c	c
c	c	c	c	c	c
d	d	c	c	c	c
e	e	c	c	c	c

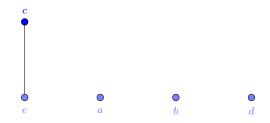
•	a	b	c	d	e
a	a	a	a	a	a
b	a	e	c	e	c
c	a	c	c	c	c
d	a	c	c	e	c
e	a	c	c	c	c

then (S, +, .) is an additively commutative semiring with an absorbing zero a. Also we define a binary ordering relation on S by:

$$\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (e, c)\},\$$

the covering relation and the figure of S is given by

$$\prec := \{(e,c)\}$$



since $bd \neq db$ so $(S, +, ., \leq)$ is a posemiring but is not multiplicatively commutative. We have all one-sided ordered ideals of S which are as follows:

$$\{a\},\{a,c\},\{ac,e\},\{a,b,c,e\},\{a,c,d,e\},S.$$

It is not difficult to check that all of them are ordered ideals of S. This show that S is a duo-posemiring.

Lemma 3.11. Let S be a posemiring then the following conditions are equivalent:

- (i) S is a duo-posemiring,
- (ii) R(A) = L(A) for each $A \subseteq S$,

(ii) R(a) = L(a) for each $a \in S$.

Proof. (i) \Longrightarrow (ii) and (ii) \Longrightarrow (iii) are obvious.

(iii) \Longrightarrow (i) Suppose L be a left ordered ideal of S and let $x \in L$, $s \in S$. By assumption (iii) we have $xs \in R(x)S \subseteq R(x) = L(x) \subseteq L(L) = L$. So L is a right ordered ideal of S. Similarly, every right ordered ideal of S is a left ordered ideal of S. Therefore, S is a duo-posemiring.

Theorem 3.12. Let S be a duo-posemiring then S is regular if and only if $(\Sigma Q_1 Q_2)^* = Q_1 \cap Q_2$ for every two ordered high- quasi- ideals Q_1 and Q_2 of S.

Proof. Assume S is a regular posemiring. Let Q_1 and Q_2 be ordered high- quasiideals of S. By Theorem 3.3 Q_1 and Q_2 can be written in the forms $Q_1 = R_1 \cap L_1$ and $Q_2 = R_2 \cap L_2$ for some R_1, R_2 and L_1, L_2 which are right ordered ideals and left ordered ideals of S, respectively. Since S is a duo-posemiring and R_1, R_2, L_1 and L_2 are ordered ideals of S which implies that Q_1 and Q_2 are ordered ideals of S. By Theorem 3.7 we have $(\Sigma Q_1 Q_2)^* = Q_1 \cap Q_2$.

Conversely, assume $(\Sigma Q_1Q_2]^* = Q_1 \cap Q_2$ for every two ordered high- quasiideals Q_1 and Q_2 of S. Let $A \subseteq S$, obviously $A \subseteq Q^*(A) \cap Q^*(A) = (\Sigma Q^*(A)Q^*(A)]^*$ and by Lemmas 1.2, 1.3 and 2.2 we have:

$$A \subseteq (\Sigma((\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*))^*.(\Sigma A + ((\Sigma SA)^* \cap (\Sigma AS)^*))^*)]^*$$

$$\subseteq (\Sigma((\Sigma A + (\Sigma AS)^*)^*.(\Sigma A + (\Sigma SA)^*))^*$$

$$\subseteq (\Sigma((\Sigma A + \Sigma AS)^*(\Sigma A + \Sigma SA)^*)]^*$$

$$\subseteq (\Sigma((\Sigma A + \Sigma AS)(\Sigma A + \Sigma SA))]^*$$

$$\subseteq (\Sigma((\Sigma A + \Sigma SA) + \Sigma AS(\Sigma A + \Sigma SA))]^*$$

$$\subseteq (\Sigma(\Sigma A^2 + \Sigma ASA + \Sigma ASA + \Sigma ASSA)]^*$$

$$\subseteq (\Sigma(\Sigma A^2 + \Sigma ASA))^*$$

$$= (\Sigma(\Sigma A^2 + \Sigma ASA))^*$$

$$= (\Sigma(\Sigma A^2 + \Sigma ASA)^*$$

$$\subseteq ((\Sigma ASA)^* + \Sigma ASA)^*$$

$$\subseteq ((\Sigma ASA)^*.$$

Therefore, by Lemma 3.2 S is a regular posemiring.

Theorem 3.13. Let S be a duo-posemiring then the following conditions are equivalent:

(i) S is regular,

- (ii) $(\Sigma L_1 L_2]^* = L_1 \cap L_2$ and $(\Sigma R_1 R_2]^* = R_1 \cap R_2$ for every two left ordered ideals L_1, L_2 and right ordered ideals R_1, R_2 of S,
- (iii) $(\Sigma RL)^* = R \cap L = (\Sigma LR)^*$, for every right ordered ideal R and left ordered ideal L of S.

Proof. By considering Theorem 3.7, it is obvious.

Definition 3.14. An element a of a posemiring S is said to be $left\ regular(right\ regular)$ if $a \le xa^2(a \le a^2x)$ for some $x \in S$. A posemiring S is said to be $left\ regular(right\ regular)$ if every element $a \in S$ is left regular(right\ regular).

Example 3.15. Let $S = \{a, b, c, d, e, f\}$. We define binary operations + and \cdot on S by the following equations:

+	a	b	c	d	e	f
a	a	b	c	d	e	f
b	b	b	b	b	b	b
c	c	c	c	c	c	c
d	d	d	d	d	d	d
e	e	e	e	e	e	e
f	f	f	f	\overline{f}	\overline{f}	\overline{f}

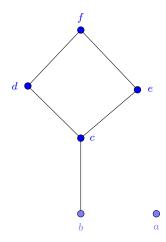
•	a	b	c	d	e	f
a	a	a	a	a	a	a
b	\overline{a}	b	b	b	b	b
c	\overline{a}	b	b	b	b	b
d	a	b	b	d	b	d
e	\overline{a}	e	e	e	e	e
f	a	e	e	f	e	f

then (S, +, .) is a semiring with an absorbing zero a. We define a binary ordering relation on S by:

$$\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (b, c), (b, e), (b, f), (c, d), (c, e), (c, f), (d, f), (e, f)\},\$$

the covering relation and the figure of S is given by:

$$\prec := \{(b,c), (c,d), (c,e), (d,f), (e,f)\}$$



now, $(S, +, ., \leq)$ is a posemiring. Clearly, a, b, d, e and f are left regular. We consider $c \leq ec^2 = eb = e$ which implies that S is left regular. S is not regular, since there is not exist $x \in S$ such that $c \leq cxc$.

Example 3.16. Consider the posemiring $S = (\mathbb{N} \cup \{0\}, max, min, \leq)$ where \leq is the natural order relation on numbers. Since, $n \leq min\{n, n, n\}$ for every $n \in \mathbb{N}$, then S is a regular, left regular and right regular posemiring.

The following lemmas are obvious:

Lemma 3.17. Let S be a posemiring then the following statements are equivalent:

- (i) S is left regular,
- (ii) $A \subseteq (\Sigma SA^2]^*$ for each $A \subseteq S$,
- (iii) $a \in (Sa^2]^*$ for each $a \in S$.

Lemma 3.18. Let S be a posemiring then the following statements are equivalent:

- (i) S is right regular,
- (ii) $A \subseteq (\Sigma A^2 S)^*$ for each $A \subseteq S$,
- (iii) $a \in (a^2S]^*$ for each $a \in S$.

Definition 3.19. Let T be a non-empty subset of a posemiring S then T is said to be *semiprime* if for every $a \in S$, $a^2 \in T$ implies that $a \in T$.

We note that a non-empty subset T of a posemiring S is semiprime if and only if for every $\emptyset \neq A \subseteq S$, $A^2 \subseteq T$ implies that $A \subseteq T$. Considering that T is semiprime, $\emptyset \neq A^2 \subseteq T$ and $a \in A$, then $a^2 \in T$ and so $a \in T$ hence, $A \subseteq T$.

Theorem 3.20. Let S be a posemiring then S is left regular and right regular if and only if every ordered high- quasi- ideal of S is semiprime.

Proof. Suppose Q be an ordered high- quasi- ideal of S. Let A be a non-empty subset of S such that $A^2 \subseteq Q$. Since S is a left regular and right regular, by Lemmas 3.17 and 3.18 we have $A \subseteq (\Sigma SA^2]^*$ and $A \subseteq (\Sigma A^2S)^*$, respectively. Hence, $A \subseteq (\Sigma SA^2)^* \cap (\Sigma A^2S)^* \subseteq (\Sigma SQ)^* \cap (\Sigma QS)^* \subseteq Q$. Therefore, Q is semiprime. Conversely, assume that every ordered high- quasi- ideal Q of S is

semiprime. Let $A \subseteq S$. Considering Lemma 2.2, we have, $Q^*(A^2) = (\Sigma A^2 + ((\Sigma S A^2)^* \cap (\Sigma A^2 S)^*))^*$. Since $A^2 \subseteq Q^*(A^2)$ and $Q^*(A^2)$ is semiprime so $A \subseteq Q^*(A^2) = (\Sigma A^2 + ((\Sigma S A^2)^* \cap (\Sigma A^2 S)^*))^*$ that implies

$$A \subseteq (\Sigma A^2 + ((\Sigma S A^2)^* \cap (\Sigma A^2 S)^*))^*$$

$$\subseteq (\Sigma A^2 + (\Sigma S A^2)^*)^*$$

$$\subseteq (\Sigma A^2 + \Sigma S A^2)^*.$$

So,

$$\Sigma A^{2} \subseteq \Sigma A(\Sigma A^{2} + \Sigma S A^{2})^{*}$$

$$\subseteq \Sigma (A\Sigma A^{2} + A\Sigma S A^{2})^{*}$$

$$\subseteq \Sigma (\Sigma A^{3} + \Sigma A S A^{2})^{*}$$

$$\subseteq \Sigma (\Sigma A^{3} + \Sigma S A^{2})^{*}$$

$$\subseteq (\Sigma (\Sigma A^{3} + \Sigma S A^{2})^{*}$$

$$\subseteq (\Sigma (\Sigma A^{3} + \Sigma S A^{2})^{*}$$

$$\subseteq (\Sigma A^{3} + \Sigma S A^{2})^{*}$$

$$\subseteq (\Sigma S A^{2} + \Sigma S A^{2})^{*}$$

$$= (\Sigma S A^{2})^{*}$$

and so $A \subseteq (\Sigma A^2 + \Sigma S A^2]^* \subseteq ((\Sigma S A^2)^* + \Sigma S A^2)^* \subseteq (\Sigma S A^2)^*$. Therefore, by Lemma 3.17, S is left regular. Also,

$$A \subseteq (\Sigma A^2 + ((\Sigma S A^2)^* \cap (\Sigma A^2 S)^*)]^*$$

$$\subseteq (\Sigma A^2 + (\Sigma A^2 S)^*]^*$$

$$\subseteq (\Sigma A^2 + \Sigma A^2 S)^*.$$

So,

$$\Sigma A^{2} \subseteq \Sigma (\Sigma A^{2} + \Sigma A^{2} S)^{*} A$$

$$\subseteq \Sigma (\Sigma A^{2} A + (\Sigma A^{2} S) A)^{*}$$

$$\subseteq \Sigma (\Sigma A^{3} + \Sigma A^{2} S A)^{*}$$

$$\subseteq \Sigma (\Sigma A^{3} + \Sigma A^{2} S)^{*}$$

$$\subseteq (\Sigma (\Sigma A^{3}) + \Sigma (\Sigma A^{2} S))^{*}$$

$$\subseteq (\Sigma A^{3} + \Sigma A^{2} S)^{*}$$

$$\subseteq (\Sigma A^{2} S + \Sigma A^{2} S)^{*}$$

$$= (\Sigma A^{2} S)^{*}$$

and so $A \subseteq (\Sigma A^2 + \Sigma A^2 S)^* \subseteq ((\Sigma A^2 S)^* + \Sigma A^2 S)^* \subseteq (\Sigma A^2 S)^*$.

Therefore, by Lemma 3.18, S is right regular.

References

[1] R. Chinram, A note on quasi-ideals in Γ -semirings, International Mathematical Forum. 3, **25** (2008), 1253-1259.

- [2] R. Chinram, A note on quasi-ideals in regular Γ-semirings, International Journal of Contemporary Mathematical Sciences. 3, **35** (2008), 1725-1731.
- [3] C. Donges, On quasi-ideals of semirings, International Journal of Mathematics and Mathematical Sciences. 17, 1 (1994), 47-58.
- [4] A. P. Gan and Y. L. Jiang, On ordered ideals in ordered semirings, Journal of Mathematical Research and Exposition. 31, 6 (2011), 986-996.
- [5] K. Iseki, Quasi-ideals in semirings without zero, Proceedings of the Japan Academy. 34, (1958), 79-81.
- [6] R. D. Jagatap and Y. S. Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semirings, Novi Sad Journal of Mathematics. 39, 2 (2009), 79-87.
- [7] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum 46, 3 (1993), 271-278.
- [8] S. K. Lee and D. M. Lee, On intra-regular ordered semigroups, Kangweon-Kyungki Math. Jour. 14, 1 (2006), 95-100.
- [9] D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Information and Engineering. 6, 1 (2014), 101-114.
- [10] M. Munir and M. Habib, Characterizing semirings using their quasi and bi-ideals, Proceedings of the Pakistan Academy of Sciences. 53, 4 (2016), 469-475.
- [11] M. Munir and A. Shafiq, A generalization of bi ideals in semirings, Bull. Int. Math. Virtual Inst. 8, 1 (2018), 123-133.
- [12] M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings, Southeast Asian Bulletin of Mathematics. 27, 5 (2004), 923-928.
- [13] O. Steinfeld, On quotients and prime ideals, Acta Math Acad. Sci. Hung. 4, (1953), 289-298.
- [14] O. Steinfeld, Quasi-ideals in rings and semigroups, Akademiaikiado, Budapest, (1978).

[15] O. Steinfeld, Uber die quasi-ideals von halbgruppen, Publications Mathematicae Debrecen. 4, $(1956),\,262\text{-}275.$