
Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

ISSN: 1735-0611

CJMS. 3(1)(2014),123-130

A modification of Chebyshev-Halley method free from
second derivatives for nonlinear equations
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Abstract. In this paper, we present a new modification of Chebyshev-
Halley method, free from second derivatives, to solve nonlinear
equations. The convergence analysis shows that our modification
is third-order convergent. Every iteration of this method requires
one function and two first derivative evaluations. So, its efficiency
index is 31/3 = 1.442 that is better than that of Newton method.
Several numerical examples are given to illustrate the performance
of the presented method.
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1. INTRODUCTION

Solving nonlinear equations is one of the most important problems in
numerical analysis. In this paper, we consider iterative methods to find
a simple root α of a nonlinear equation f(x) = 0, where f : I 7→ R, for
an open interval I, is a scalar function. Newton method is undoubtedly
the most famous iterative method to find α by using the scheme

xn+1 = xn − f(xn)

f ′(xn)
(1.1)
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that converges quadratically in some neighborhood of α [1].
The classical Chebyshev-Halley method [2] which improves Newton

method is given by

xn+1 = xn −
(
1 +

1

2

Lf (xn)

1− βLf (xn)

)
f(xn)

f ′(xn)
, (1.2)

in which

Lf (xn) =
f(xn)f

′′(xn)

f ′2(xn)
, (1.3)

and β is a parameter. This family is known to converge cubically, and
includes, as particular cases, the classical Chebyshev method (β = 0),
Halley method (β = 1/2) and Supper-Halley method (β = 1). It is
observed that the methods depend on the second derivatives in comput-
ing process, making its practical utility rigorously restricted, so that the
Newton method is frequently used as an alternative in solving nonlinear
equations.

To remove the second derivative from (1.3), recently, some variants of
Chebyshev-Halley method have been obtained [3,4,5,6].

Chun [3] considers approximating the equation f(x) = 0 around the
point (xn, f(xn)) by the quadratic equation in x and y in the form
x2+ay2+ bx+ cy+d = 0 and imposes the tangency conditions y(xn) =

f(xn), y′(xn) = f ′(xn), y(wn) = f(wn), where wn = xn − f(xn)

f ′ (xn)
, to

obtain

f
′′
(xn) ≈ y

′′
(xn) = 2

(
1 + af ′2(xn)

) f(wn)f
′2(xn)

f2(xn) + af ′2(xn)[f(wn)− f(xn)]2
.

Therefore, he gets the approximation of

Lf (xn) ≈
2f(xn)f(wn)(1 + af ′2(xn))

f2(xn) + af ′2(xn)[f(wn)− f(xn)]2
, (1.4)

in which a is a parameter.
Xiaojian [4], to remove the f ′′(xn) in (1.3), approximated the equation

f(x) = 0 around the point (xn, f(xn)) by the hyperbola form axy +
y + bx + c = 0 and imposed the tangency conditions y(xn) = f(xn),

y′(xn) = f ′(xn) and y(wn) = f(wn), where wn = xn − f(xn)
f ′(xn)

. So, he

gets the approximation of

f ′′(xn) ≈ y′′(xn) =
2f ′2(xn)f(wn)

f2(xn)− f(xn)f(wn)
,

that results in

Lf (xn) ≈
2f(wn)

f(xn)− f(wn)
. (1.5)
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Chun [5], to derive an approximation of f ′′(xn) in (1.3), considers the
approximation f(x) ≈ g(x) := ax3+bx2+cx+d, satisfying the conditions

f ′(xn) = g′(xn) and f ′(wn) = g′(wn), in which wn = xn − f(xn)
f ′(xn)

. He

then derived the approximation of

f ′′(xn) ≈ g′′(xn) =
f ′(wn)− f ′(xn)

wn − xn
− λ(wn − xn), λ = 3a

that results in

Lf (xn) ≈ 1− f ′(wn)

f ′(xn)
+ λ

f2(xn)

f ′3(xn)
. (1.6)

Jisheng, Yitian and Xiuhua [6] used Taylor expansion of f(yn) about

xn, in which yn = xn − θ f(xn)
f ′(xn)

and θ is a nonzero real parameter, and

get the following approximation of

Lf (xn) ≈
f(yn) + (θ − 1)f(xn)

θ2f(xn)
. (1.7)

It is proved that all of the above approximations of Lf (xn) applied
to the Chebyshev-Halley method (1.2) lead to a cubically convergent
method.

In this paper, using a new observation, we will approximate Lf (xn)
by a finite difference between first derivatives. So, a new modification of
Chebyshev-Halley method, free from second derivatives, is obtained. It
is proved that our new modification has third-order convergence. Some
examples are given to show the efficiency and superiority of the new
method.

2. A NEW APPROXIMATION OF Lf (xn)

To obtain a new modification for Chebyshev-Halley method, free from
second derivatives, we will approximate Lf (xn) using first derivatives.
To this end, notice that

f ′′(x)

f ′2(x)
= −

(
1

f ′(x)

)′
.

Using the well-known finite difference approximation F ′(xn) ≈ [F (xn +
δn)− F (xn)]/δn, in which F (x) = 1/f ′(x) and δn = γf(xn), we have(

1

f ′(x)

)′
≈ 1

γf(xn)

[
1

f ′(xn + γf(xn))
− 1

f ′(xn)

]
.

So, we get the following approximation:

f ′′(xn)

f ′2(xn)
≈ 1

γf(xn)

[
1

f ′(xn)
− 1

f ′(xn + γf(xn))

]
,
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where γ ̸= 0 is a parameter. Considering the above approximation, we
will have

Lf (xn) ≈ L̃f (xn) :=
1

γ

[
1

f ′(xn)
− 1

f ′(xn + γf(xn))

]
, (2.1)

that results in the following modification of the Chebyshev-Halley method,
free from second derivatives:

xn+1 = xn −

(
1 +

1

2

L̃f (xn)

1− βL̃f (xn)

)
f(xn)

f ′(xn)
. (2.2)

In the sequel, we prove that the modified Chebyshev-Halley method
(2.2) is cubically convergent for any choices of the constant parameters
γ and β. To do so, we need the following facts.

Definition 2.1. [4] Let f(x) be a real function with a simple root α and
{xn}n≥0 be a sequence of real numbers, converging towards α. Then, we
say that the order of convergence of the sequence is p, if there exists a
constant real number C ̸= 0, called the asymptotic error constant, such
that

lim
n→∞

|xn+1 − α|
|xn − α|p

= C.

For p =1, 2, 3 the sequence is said to have linear convergence, qua-
dratic convergence or cubic convergence, respectively.

Definition 2.2. [4] Let en = xn − α be the error in the n-th iteration.
We call the relation

en+1 = Cepn +O(ep+1
n ),

as the error equation.

If we can obtain the error equation for any iterative method, then
the value of p is its order of convergence and C is the asymptotic error
constant.

Definition 2.3. [4] Let r be the number of new pieces of information
required by a method. A ”piece of information” is typically any evalua-
tion of a function or one of its derivatives. The efficiency of the method
is measured by the concept of efficiency index and is defined by

ρ = p1/r,

where p is the order of the method.

The following theorem is the main result of the manuscript.

Theorem 2.4. Let α ∈ I be a simple root (that is f ′(α) ̸= 0) of a
sufficiently differentiable function f : I 7→ R for an open interval I.
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If x0 is sufficiently close to α, then for any choices of the parameters
γ ̸= 0 and β, the modified Chebyshev-Halley method (2.2) has third-order
convergence, satisfying the error equation

en+1 =
(
2
(
1− β + γf ′(α)

)
c22 −

(
1 + 1.5γf ′(α)

)
c3
)
e3n +O(e4n), (2.3)

where en = xn − α and ck =
f (k)(α)

k!f ′(α)
.

Proof. Using Taylor expansion and taking into account f(α) = 0, we
have

f(xn) = f ′(α)
(
en + c2e

2
n + c3e

3
n +O(e4n)

)
, (2.4)

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)

)
. (2.5)

Dividing (2.4) by (2.5) gives

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c22 − c3)e

3
n +O(e4n). (2.6)

Using the relation (2.5), we have also

1

f ′(xn)
=

1

f ′(α)

[
1− 2c2en + (4c22 − 3c3)e

2
n + (12c2c3 − 8c32 − 4c4)e

3
n +O(e4n)

]
.

(2.7)
Take zn = xn + γf(xn). Then,

zn − α = (1 + γf ′(α)) en + γf ′(α)
(
c2e

2
n + c3e

3
n +O(e4n)

)
and the Taylor expansion of f ′(zn) about α can be read as

f ′(zn) = f ′(α)
(
1 + 2c2(zn − α) + 3c3(zn − α)2 + 4c4(zn − α)3 +O(e4n)

)
= f ′(α)

(
1 + 2c2(1 + γf ′(α))en + ke2n +me3n +O(e4n)

)
,

in which

k = 2c22γf
′(α) + 3c3(1 + γf ′(α))2,

m = 2c2c3γf
′(α)(4 + 3γf ′(α)) + 4c4(1 + γf ′(α))3.

Hence,

1

f ′(zn)
=

1

f ′(α)

[
1− 2c2(1 + γf ′(α))en

+
(
4c22(1 + γf ′(α)2 − k

)
e2n +Ne3n +O(e4n)], (2.8)

where

N = 4kc2(1 + γf ′(α))− 8c32(1 + γf ′(α))3 −m.
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Using relations (2.7) and (2.8), we obtain the following Taylor expansion

of L̃f (xn) about α:

L̃f (xn) =
1

γf ′(α)

[
2c2γf

′(α)en + Se2n +Me3n +O(e4n)
]
, (2.9)

in which

S = 4c22 − 3c3 − 4c22(1 + γf ′(α))2 + k,

M = 12c2c3 − 8c32 − 4c4 −N.

Thus,

1−βL̃f (xn) =
1

γf ′(α)

[
γf ′(α)− 2c2γβf

′(α)en − βSe2n − βMe3n +O(e4n)
]
.

(2.10)
Dividing (2.9) by (2.10) gives

L̃f (xn)

1− βL̃f (xn)
= 2c2en +

1

γf ′(α)

(
4c22γβf

′(α) + S
)
e2n

+
1

γf ′(α)

(
4c2βS + 8c32β

2γf ′(α) +M
)
e3n +O(e4n).

(2.11)
Therefore, using (2.6) and (2.11), we have

en+1 =

(
2c3 − c22 − 2c22β − 1

2γf ′(α)
S

)
e3n +O(e4n).

By substitution the value of S in this relation and application of some
simplifications, we obtain

en+1 =
(
2
(
1− β + γf ′(α)

)
c22 −

(
1 + 1.5γf ′(α)

)
c3
)
e3n +O(e4n),

which indicates that the method defined by (2.2) is cubically convergent.
□

It is obvious that each iteration of the modified Chebyshev-Halley
method (2.2) requires one evaluation of the function and two of its first
derivative. So, according to the Definition 2.3, this method has the effi-
ciency index equal to 3

√
3 ≈ 1.442, which is better than that of Newton

method
√
2 ≈ 1.414. Thus, the new method is preferable if the compu-

tational cost of the first derivative is not more than that of the function
itself.

3. NUMERICAL EXAMPLES

Now, we compare the methods of Newton (1.1) (N), Halley (1.2) with
β = 0.5 (H), Xiaojian (1.5) (X), Chun (1.6) with λ = −1 (C), Jisheng



A modification of Chebyshev-Halley method free from second derivatives 129

etc. (1.7) with θ = −1 (JYX), modified Halley (2.2) with β = 0.5 and
γ = 0.2 (MH) obtained in this paper to solve some nonlinear equations.

All computations were done using MATLAB 6.5 with the format of
long floating point arithmetics. We accept an approximate solution
rather than the exact root, depending on the precision (ε) of the com-
puter. We use the following stopping criterion for computer programs:
|xn+1 − xn| < ε or the maximum number of iterations is maxiter. So,
when the stopping criterion is satisfied, x∗ := xn+1 is taken as the ex-
actly computed root α. For numerical illustrations in this section, we
used the fixed stopping criterion ε = 10−15 and maxiter= 250. The
following test functions displayed the approximate zeros x∗ round up to
16th decimal places.

f1(x) = x3 + 4x2 − 10, x∗ = 1.365230013414097

f2(x) = (x+ 2)ex − 1, x∗ = −0.442854401002388

f3(x) = x4 + 9x3 + 11x2 + 19x− 41, x∗ = 1.013772500077165

f4(x) = ex sinx+ ln(x2 + 1), x∗ = 0

f5(x) = xex
2 − sin2 x+ 3 cosx+ 5, x∗ = −1.207647827130919

f6(x) = ex
2+7x−30 − 1, x∗ = 3

f7(x) = sin2 x− x2 + 1, x∗ = 1.4044916482153411

f8(x) = 1− x+ 2 sinx, x∗ = 2.380061273139339

Numerical results are shown in Table 1. The quantities therein denote
the number of iterations, and the asterisk means that the number of
iterations is more than maxiter. By taking Table 1 into consideration,
we note that the number of iterations of our method (2.2) is comparable
with that of obtained by using the other procedures.

Table 1. Comparison of various cubically convergent methods and the Newton method

N H X C JYX MH
f1, x0 = −0.1 80 73 29 * 20 25
f2, x0 = −1.2 8 5 4 6 6 5
f3, x0 = 0 8 4 4 4 4 4
f4, x0 = 1 7 5 4 5 5 4
f5, x0 = 2 220 6 31 22 * 14
f6, x0 = 3.3 9 5 4 5 4 4
f7, x0 = 0.1 16 9 9 * 28 6
f8, x0 = 0.1 32 33 28 6 11 6
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4. CONCLUSIONS

In this work, we presented a new modification for Chebyshev-Halley
method, free from second derivatives, to solve nonlinear equations. Ev-
ery iteration of the new method requires one function and two first
derivative evaluations. Hence, its efficiency index is 31/3 = 1.442 that
is better than that of Newton method. Order of convergence of this
method is three. Numerical experiments show that our method is com-
parable with other third-order methods.

Acknowledgement. The authors thanks to the referee for his im-
portant suggestions which essentially improved the first version of the
paper.
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