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1. Introduction

Partial differential equations (PDEs) are not capable of capturing
memory effects in the mathematical modeling of a system. To address
this issue and simulate some history dependence, models have utilized
fractional operators [19, 37, 38] and integral terms. Mathematicians are
influenced by this and end up working with Volterra-type partial integro-
differential equations (PIDEs). viscoelastic materials [22, 25, 39] are the
subject of these models.

Numerous studies have been carried out on numerical solutions to
these equations. McLean et al. utilized various strategies, including
Crank-Nicolson and backward Euler methods [31], and a parallelizable
method built upon Laplace transforms [26, 28, 29, 30]. In addition, they
used the piecewise-linear finite element method to discretize space. The
main goal of [10] is to investigate the numerical behavior of second-order
PIDEs arising from viscoelasticity. An iteration technique was employed
by Dehghan and Shakeri in their paper [12] to describe heat conduction
in materials that have memory.

There are many physical concepts described by fourth-order models,
such as the energy field in fluid mechanics [24], simulating thin beams
[15]. Due to the non-local nature of the fractional derivative, these
derivatives play a significant role in the modeling of sub-diffusion pro-
cesses as a result of their non-locality [40].

The main concern of this paper is to solve the following fourth order
time-fractional (TF) PIDE:

C
0 D

α
t u+

∂u

∂x
−
∫ t

0
(t− ξ)β1−1∆u dξ

+

∫ t

0
(t− ξ)β2−1∆2u dξ = f, (x, t) ∈ Ω× (0, T ]

(1.1)

subject to the initial condition u(x, 0) = u0(x) and and the periodic
boundary conditions (BCs), where α, β1 and β2 ∈ (0, 1), f ∈ L2(Ω) and
C
0 D

α
t is the Caputo fractional derivative and defined as

C
0 D

α
t w(t) =


1

Γ(1− α)

∫ t

0

w′(ξ)

(t− ξ)α
dξ, 0 < α < 1,

∂w(t)

∂t
, α = 1.

(1.2)

∆ =
∂2

∂x2
and ∆2 =

∂4

∂x4
are the Laplacian and biharmonic operators,

respectively.
There are many numerical techniques available for solving a fourth-

order PIDEs with a positive-type memory term. Fakhar-Izadi el al.
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introduced spectral-Galerkin methods [16, 17]. Using quasi-wavelets,
Yang et al. [42, 43] solved fourth-order PIDEs with a weakly singular
kernel (WSK). In [35], Mohammadi et al. analyzed the stability of
backward FD and local discontinuous Galerkin (LDG) method.

Discontinuous Galerkin (DG) method was introduced by Reed and
Hill [41] for solving a variety of problems. Many extensions of the DG
method exist, such as symmetric interior penalty DG (SIPG), non-
symmetric interior penalty DG (NIPG) and local DG (LDG) meth-
ods. In [1], Abbaszadeh and Dehghan analyzed the interior penalty
DG (IPDG) methods for generalized Sobolev equations. In [34], Mo-
hammadi et al. studied and analyzed the IPDG and enriched Galerkin
(EG) methods for solving TF parabolic-type equations.

Second- and higher-order PDEs can be numerically solved using the
LDG method [9]. For the numerical approximation of fourth- and higher-
order PDEs, the LDG method has been used and analyzed in [14]. LDG
method has been used over the past decade for various integer and frac-
tional ODEs [3, 13, 32] and PDEs [2, 18]. Baccouch investigated the
superconvergence error analysis of various fourth-order PDEs [4, 5, 6,
7]. Based on variational multiscale element free Galerkin (VMEFG)
and LDG methods, the author of [11] solved the Brusselator equation.
Fouladi and Dahaghin, in [21] , have combined the LDG method with the
locally one-dimensional strategy to solve diffusion equations. Authors of
[20] recovered the numerical solution of the Riesz space distributed-order
(DO) Sobolev equation. To solve the DO TF equations, the authors of
[33] combined LDG method and Laplace transforms (LTM-LDG) to-
gether. In [36] the authors used LTM-LDG scheme for the fourth-order
TF PIDEs with weakly singular kernels.

The rest of the paper, is organized as follows: Section 2, is dedicated
to some backgrounds and preliminaries of temporal discretization, quad-
rature formula and spatial discretization. In Section 3, we present the
semi-discrete LDG and full-discrete FD-LDG schemes. Finally some ex-
perimental results in Section 4 numerically confirm the convergence of
the proposed scheme.

2. Preliminaries and backgrounds

2.1. Time discretization: L1 formula for Caputo derivative.
Consider the time domain I = [0, T ] with the partition 0 = t0 < t1 <

· · · < tN−1 = tN = T . We define In = [tn−1, tn], so [0, T ] ≈ Th = ∪N
n=1In.

We aim to discretize the TF Caputo derivative C
0 D

α
t w(tn) using the L1
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formula [23] as

C
0 D

α
t w(tn+1) =

1

τ

[
b
(α)
0 w(tn+1)−

n∑
s=1

(
b
(α)
n−s − b

(α)
n+1−s

)
w(ts)

− b(α)n w(t0)

]
+Rn+1

1 (w),

(2.1)

in which τ is the time step size and bs’s are

b(α)s =
τ1−α

Γ(2− α)

[
(s+ 1)1−α − s1−α

]
, s = 0, 1, . . . , n, (2.2a)

|Rn
1 (w)| ≤ Cmax

0≤t≤t
|wtt(t)|τ2−α. (2.2b)

So, denoting w(tn) by wn, we define the approximation operator C
0 Dα

t w
n+1

as

C
0 Dα

t w
n+1 =

1

τ

[
b
(α)
0 wn+1 −

n∑
s=1

(
b
(α)
n−s − b

(α)
n+1−s

)
ws − b(α)n w0

]
. (2.3)

2.2. Quadrature formula: Integral terms. In this part, we aim to
approximate the integral term∫ tn+1

0
(tn+1 − ξ)β−1w(ξ) dξ. (2.4)

Following [27, 44], let Π0,s+1w(t) = w(ts+1) be the the piecewise constant
approximation of w(ξ). From the interpolation theory, for s = 0, . . . , N−
1, we have

w(t)−Π0,s+1w(t) = w
′
(ηs+1)(t− ts+1), t ∈ [ts, ts+1], ηs+1 ∈ (ts, ts+1).

(2.5)

Thus, we arrive at∫ tn+1

0
(tn+1 − ξ)β−1w(ξ) dξ =

n∑
s=0

∫ ts+1

ts

(tn+1 − ξ)β−1w(η) dξ

=
τβ

β

n∑
s=0

d(β)s wn−s+1 +Rn+1
2 (w),

(2.6)

where d(β)s = (s+ 1)β − sβ, 0 < β < 1, 0 ≤ s and Rn+1
2 (w) = O(τ1+β).

Then, we use the following quadrature operator [23]:

Iβwn+1 =
τβ

β

n∑
s=0

d(β)s wn−s+1. (2.7)
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Lemma 2.1 ([8, 27]). Let us define the quadrature error as

εn+1(w) =
τβ

β

n∑
s=0

d(β)s wn−s+1 −
∫ tn+1

0
(tn+1 − ξ)β−1w(ξ) dξ, (2.8)

such that wt ∈ L1(0, T ;L2), then, the global quadrature error holds

N−1∑
n=0

∥εn+1(w)∥ ≤ CT

∫ tn+1

0
∥wt∥ dξ, tN ≤ T, (2.9)

where CT is a constant.

2.3. Spatial discretization. Consider the spatial domain Ω = [a, b]
with the partition a = x0 < x1 < · · · < xM−1 = xM = b. We define
Ei = [xi−1, xi], so Ω ≈ Eh = ∪M

i=1Ei, hi = xi − xi−1 and h = ∆x =
max

1≤i≤M
hi.

Let e be the intersection of elements Ei and Ei+1, we denote

w±
i = w(x±i ) = lim

ϱ→0±
w(xi + ϱ), ∀(xi) ∈ e, (2.10)

the left and right limits of w(xi). Next, in order to formulate the nu-
merical scheme, we define the finite element subspace Vh as

Vh =

{
v : Eh → R

∣∣∣∣ v∣∣Ei
∈ Pk(Ei), i = 1, . . . ,M

}
, (2.11)

where Pk(Ei) is the set of all polynomials of degree less than or equal
k, k ≥ 1 and then restrict the trial and test functions to Vh.

3. Numerical scheme

This section is divided in two parts. First, utilizing LDG method,
we present the semi-discrete LDG method for the numerical solution
of (1.1). Next, considering the FD scheme (L1 formula) for temporal
terms, the full discrete FD-LDG (L1-LDG) method is presented.

3.1. Semi-discrete LDG method. In order to introduce the LDG
formulation, at first we define some auxiliary variables as

p =
∂u

∂x
, q =

∂p

∂x
, r =

∂q

∂x
, (3.1)
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then rewrite Eq. (1.1) as



C
0 D

α
t u+

∂u

∂x
−
∫ t

0
(t− τ)β1−1 ∂p

∂x
dτ

+

∫ t

0
(t− τ)β2−1 ∂r

∂x
dτ = f,

p =
∂u

∂x
,

q =
∂p

∂x
,

r =
∂q

∂x
,

(3.2)

Multiplying equations (3.2) by some smooth functions v, w, ψ and χ
and integrating by parts over an element Ei ∈ Eh, result the following
formulation that holds for (u, p, q, r)

(
C
0 D

α
t u, v

)
Ei

+

[[
uv

]xi

xi−1
−

(
u,
∂v

∂x

)
Ei

]

−
∫ t

0
(t− ξ)β1−1

[[
pv

]xi

xi−1
−

(
p,
∂v

∂x

)
Ei

]
dξ

+

∫ t

0
(t− ξ)β2−1

[[
rv
]xi

xi−1
−

(
r,
∂v

∂x

)
Ei

]
dξ = (f, v)Ei

,

(3.3a)

(p, w)Ei
=

[[
uw

]xi

xi−1
−
(
u,
∂w

∂x

)
Ei

]
, (3.3b)

(q, ψ)Ei
=

[[
pψ

]xi

xi−1
−
(
p,
∂ψ

∂x

)
Ei

]
, (3.3c)

(r, χ)Ei
=

[[
qχ

]xi

xi−1
−
(
q,
∂χ

∂x

)
Ei

]
, (3.3d)
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Now, the LDG scheme is defined as: find (uh, ph, qh, rh) ∈ Vh×Vh×Vh×
Vh as the approximation of (u, p, q, r) such that (uh, ph, qh, rh) satisfies:

(
C
0 D

α
t uh, v

)
Ei

+

[[
ûhv

]xi

xi−1
−
(
uh,

∂v

∂x

)
Ei

]

−
∫ t

0
(t− ξ)β1−1

[[
p̂hv

]xi

xi−1
−

(
ph,

∂v

∂x

)
Ei

]
dξ

+

∫ t

0
(t− ξ)β2−1

[[
r̂hv

]xi

xi−1
−
(
rh,

∂v

∂x

)
Ei

]
dξ = (f, v)Ei

,

(3.4a)

(ph, w)Ei
=

[[
ûhw

]xi

xi−1
−
(
uh,

∂w

∂x

)
Ei

]
, (3.4b)

(qh, ψ)Ei
=

[[
p̂hψ

]xi

xi−1
−

(
ph,

∂ψ

∂x

)
Ei

]
, (3.4c)

(rh, χ)Ei
=

[[
q̂hχ

]xi

xi−1
−

(
qh,

∂χ

∂x

)
Ei

]
, (3.4d)

The notations û, p̂, q̂ and r̂ denote the numerical fluxes which are defined
at interior interfaces (edges) as [14]

û = u−, p̂ = p+, q̂ = q−, r̂ = r+, (3.5a)

and for the boundary faces

û
∣∣
x0

= û
∣∣
xM

= u−
∣∣
xM
, p̂

∣∣
x0

= p̂
∣∣
xM

= p+
∣∣
x0
,

q̂
∣∣
x0

= q̂
∣∣
xM

= q−
∣∣
xM
, r̂

∣∣
x0

= r̂
∣∣
xM

= r+
∣∣
x0
.

(3.5b)

These (alternative) numerical fluxes ensure stability and optimal con-
vergence rate. It should be noted that this choice is not unique and
other numerical fluxes such as the central numerical flux can also be
used.

3.2. Full-discrete FD-LDG method. Using (2.3) for temporal dis-
cretization and quadrature rules (2.7) in semi-discrete scheme (3.4), the
full-discrete FD-LDG method follows as: Find

(
un+1
h , pn+1

h , qn+1
h , rn+1

h

)
∈

Vh ×Vh ×Vh ×Vh as the approximation of
(
un+1, pn+1, qn+1, rn+1

)
such
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that (uh, ph, qh, rh) satisfies:

b
(α)
0

(
un+1
h , v

)
Ei

−
n∑

s=0

(
b
(α)
n−s − b

(α)
n+1−s

)
(ush, v)Ei

− b(α)n

(
u0h, v

)
Ei

+τ

[[
ûn+1
h v

]xi

xi−1
−

(
un+1
h ,

∂v

∂x

)
Ei

]

−µ1
n∑

s=0

d(β1)
s

[[
p̂n−s+1
h v

]xi

xi−1
−
(
pn−s+1
h ,

∂v

∂x

)
Ei

]

+µ2

n∑
s=0

d(β2)
s

[[
r̂n−s+1
h v

]xi

xi−1
−
(
rn−s+1
h ,

∂v

∂x

)
Ei

]
= τ

(
fn+1, v

)
Ei
,

(3.6a)

(psh, w)Ei
=

[[
ûshw

]xi

xi−1
−
(
ush,

∂w

∂x

)
Ei

]
, (3.6b)

(qsh, ψ)Ei
=

[[
p̂shψ

]xi

xi−1
−
(
psh,

∂ψ

∂x

)
Ei

]
, (3.6c)

(rsh, χ)Ei
=

[[
q̂shχ

]xi

xi−1
−
(
qsh,

∂χ

∂x

)
Ei

]
, (3.6d)

for s = 0, . . . , n+ 1 and all v, w, ψ and χ ∈ Vh.

4. Numerical experiments

In this section, we present some numerical results to show the accu-
racy of the proposed scheme. Assume that u and uh be the exact and
approximation solution obtained by FD-LDG methods, respectively. Let
us define the L2 norm of the error, eh = u− uh, as

∥u− uh∥L2 =

√∫
Eh

(u− uh)
2 dx, (4.1)

and the computational order (CO) is defined as bellow

CO =

ln(
∥eh∥L2

∣∣
h1

∥eh∥L2

∣∣
h2

)

ln(h1
h2
)

. (4.2)
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Example 4.1. Consider the following fourth order time-fractional PI-
DEs:

C
0 D

α
t u+

∂u

∂x
−
∫ t

0
(t− ξ)β1−1∆u dξ

+

∫ t

0
(t− ξ)β2−1∆2u dξ = f, (x, t) ∈ [0, 1]× (0, 1]

(4.3)

subject to zero initial condition and periodic BCs. The source term,
f , is a given function, so that the exact solution of this problem is as
follows

u(x, t) = t3−α cos(2πx). (4.4)
The errors and computational order of the proposed scheme is reported
in Table 1 for k = 1, 2 for different values of fractional orders of α, β1
and β2. The Convergence plots of the scheme is presented in figure 1.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10 -5

10 -4

10 -3

10 -2

10 -1

Figure 1. Convergence plots of FD-LDG method with
k = 1, 2 and α = β1 = β2 = 0.5 : Example 4.1.

The results show the accuracy of the scheme and the optimal con-
vergence rate, O(hk+1), in the discrete L2 norm, where k represents the
degree of approximation polynomials.

5. Conclusion

Our proposed method for solving fourth-order time-fractional PI-
DEs uses a finite difference and local discontinuous Galerkin method,
which can be extended for high-dimensional cases and is suitable for
convection-dominated equations. The temporal term was discreted us-
ing the finite difference method (L1 formula) and the memory term was
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Table 1. Errors and CO of the FD-LDG methods (3.6)
for Eq. (4.3) with k = 1, 2: Example 4.1.

k = 1 k = 2

(α , β1, β2) h ∥eh∥L2
CO ∥eh∥L2

CO
α = 0.5

1

10
1.8916e-02 – 1.2201e-03 –

β1 = 0.25
1

20
4.7608e-03 1.9903 1.5310e-04 2.9944

β2 = 0.75
1

30
2.1195e-03 1.9958 4.5416e-05 2.9971

1

40
1.1932e-03 1.9973 1.9172e-05 2.9978

α = 0.5
1

10
1.8804e-02 – 1.2171e-03 –

β1 = 0.5
1

20
4.7494e-03 1.9853 1.5319e-04 2.9900

β2 = 0.5
1

30
2.1170e-03 1.9928 4.5466e-05 2.9959

1

40
1.1924e-03 1.9953 1.9195e-05 2.9976

α = 0.5
1

10
1.8143e-02 – 1.1403e-03 –

β1 = 0.75
1

20
4.6088e-03 1.9769 1.4700e-04 2.9555

β2 = 0.25
1

30
2.0626e-03 1.9828 4.4074e-05 2.9709

1

40
1.1650e-03 1.9857 1.8714e-05 2.9776

discreted using quadrature respectively. Finally, numerical experiments
have been carried out and they have demonstrated that the rate of con-
vergence is optimal.
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