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1. INTRODUCTION

Partial differential equations (PDEs) are not capable of capturing
memory effects in the mathematical modeling of a system. To address
this issue and simulate some history dependence, models have utilized
fractional operators [19, 37, B8] and integral terms. Mathematicians are
influenced by this and end up working with Volterra-type partial integro-
differential equations (PIDEs). viscoelastic materials [22, 25, B9] are the
subject of these models.

Numerous studies have been carried out on numerical solutions to
these equations. McLean et al. utilized various strategies, including
Crank-Nicolson and backward Euler methods [31]. and a parallelizable
method built upon Laplace transforms [26, 28, 29, B0]. In addition, they
used the piecewise-linear finite element method to discretize space. The
main goal of [10] is to investigate the numerical behavior of second-order
PIDEs arising from viscoelasticity. An iteration technique was employed
by Dehghan and Shakeri in their paper [12] to describe heat conduction
in materials that have memory.

There are many physical concepts described by fourth-order models,
such as the energy field in fluid mechanics [24], simulating thin beams
[15]. Due to the non-local nature of the fractional derivative, these
derivatives play a significant role in the modeling of sub-diffusion pro-
cesses as a result of their non-locality [40].

The main concern of this paper is to solve the following fourth order
time-fractional (TF) PIDE:

) t _
OCDgu+aZ—/O (t— &) Aude

' (1.1)
+/ (t —5)52_1 Aude = f, (z,t) € Qx (0,7
0

subject to the initial condition u(x,0) = wp(x) and and the periodic
boundary conditions (BCs), where «, 81 and 2 € (0,1), f € L*(Q) and
SD is the Caputo fractional derivative and defined as

L )/Ot(w,(g)adg, 0<a<l,

SDpw(t) = ¢ L ~a) Jo (E=8) (12)
du(t) a=1
ot ’ -
0? o
A = —— and A? = —— are the Laplacian and biharmonic operators,
Ox2 Oxt

respectively.
There are many numerical techniques available for solving a fourth-
order PIDEs with a positive-type memory term. Fakhar-Izadi el al.
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introduced spectral-Galerkin methods [16, 17]. Using quasi-wavelets,
Yang et al. [42, 43] solved fourth-order PIDEs with a weakly singular
kernel (WSK). In [35], Mohammadi et al. analyzed the stability of
backward FD and local discontinuous Galerkin (LDG) method.

Discontinuous Galerkin (DG) method was introduced by Reed and
Hill [41] for solving a variety of problems. Many extensions of the DG
method exist, such as symmetric interior penalty DG (SIPG), non-
symmetric_interior penalty DG (NIPG) and local DG (LDG) meth-
ods. In [l], Abbaszadeh and Dehghan analyzed the interior penalty
DG (IPDG) methods for generalized Sobolev equations. In [34], Mo-
hammadi et al. studied and analyzed the IPDG and enriched Galerkin
(EG) methods for solving TF parabolic-type equations.

Second- and higher-order PDEs can be numerically solved using the
LDG method [9]. For the numerical approximation of fourth- and higher-
order PDEs, the LDG method has been used and analyzed in [14]. LDG
method has been used over the past decade for various integer and frac-
tional ODEs [3, 13, B2] and PDEs [2, 18]. Baccouch investigated the
superconvergence error analysis of various fourth-order PDEs 4, b, b,
7]. Based on variational multiscale element free Galerkin (VMEFG)
and LDG methods, the author of [11] solved the Brusselator equation.
Fouladi and Dahaghin, in [21] , have combined the LDG method with the
locally one-dimensional strategy to solve diffusion equations. Authors of
[20] recovered the numerical solution of the Riesz space distributed-order
(DO) Sobolev equation. To solve the DO TF equations, the authors of
B3] combined LDG method and Laplace transforms (LTM-LDG) to-
gether. In [36] the authors used LTM-LDG scheme for the fourth-order
TF PIDEs with weakly singular kernels.

The rest of the paper, is organized as follows: Section E, is dedicated
to some backgrounds and preliminaries of temporal discretization, quad-
rature formula and spatial discretization. In Section B, we present the
semi-discrete LDG and full-discrete FD-LDG schemes. Finally some ex-
perimental results in Section ] numerically confirm the convergence of
the proposed scheme.

2. PRELIMINARIES AND BACKGROUNDS

2.1. Time discretization: L1 formula for Caputo derivative.
Consider the time domain I = [0, 7] with the partition 0 = tp < t; <
e <tyo1 =ty =T. Wedefine I, = [t—1,tn],80[0,T] = Tp, = Urjy:lln.
We aim to discretize the TF Caputo derivative {D®w(t,,) using the L1
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formula [23] as

1 « = e «
§DFw(tns1) =~ [bé witar) = Y (617 — b ) wit)
s=1 (2.1)

- b%“)w(to)] LRI (w),

in which 7 is the time step size and by’s are

11—«
bl = ﬁ [(s + 1)l — sl—a], s=0,1,...,n, (2.2a)
R (w)] < C&lﬁél%t@)l*“"- (2.2b)

So, denoting w(t,) by w", we define the approximation operator 007)7‘5"w”Jrl
as

OCDtoz,wnJrl _ 71—|:béoz)wn+1 - Z (b(a) - biﬁgks) w® — bgla)w(]:| ' (23)

n—s
s=1

2.2. Quadrature formula: Integral terms. In this part, we aim to
approximate the integral term

tn+1
| - 97 i) e (2.4)
Following [27, 44], let Iy s 1w (t) = w(ts+1) be the the piecewise constant
approximation of w(&). From the interpolation theory, for s = 0,..., N—

1, we have

w(t) — HO,erlw(t) = (Ns1)(t —tsy1), t € [ts,tsr1], Nsy1 € (s, tsy1).
(2.5)

Thus, we arrive at

tnt1 ts+1
[ =95 0@ de =Y [ b~ 7wl
SZO o (2.6)
Z% Y dPw T R (w),
s=0

where d{?) = (s +1)7 = 57,0 < 8. < 1,0 < 5 and Ry (w) = O(r'*7).
Then, we use the following quadrature operator [23]:

/8 n
TPuwntl = % Z APy st (2.7)
5=0
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Lemma 2.1 ([8, 27]). Let us define the quadrature error as

B n tn+1
e (w) = % Y dPw —/O (tns1 — €7 w(€) de,  (2.8)
s=0

such that wy € L1(0,T; Le), then, the global quadrature error holds

N-1 toin
Sletwl<cr [ ulds <t (29)
n=0 0

where Cr is a constant.

2.3. Spatial discretization. Consider the spatial domain Q = [a, ]
with the partition ¢ = 2o < 11 < --- < xpy—1 = xp = b. We define
E, = [a:i_l,xi], so Q) ~ &, = Ui]\ilEia hi = x; —x;—1 and h = Ax =
max h;.

1<i<M

Let e be the intersection of elements F; and F;11, we denote

wE = w(a?

) = lim w(z; +0), V(x;) € e, (2.10)

0—0E

the left and right limits of w(z;). Next, in order to formulate the nu-
merical scheme, we define the finite element subspace V}, as

Vh:{v: Eh— R

vl € PM(E:), i = 1,...,M}, (2.11)

where P¥(E;) is the set of all polynomials of degree less than or equal
k, k > 1 and then restrict the trial and test functions to V.

3. NUMERICAL SCHEME

This section is divided in two parts. First, utilizing LDG method,
we present the semi-discrete LDG method for the numerical solution
of (@) Next, considering the FD scheme (L1 formula) for temporal
terms, the full discrete FD-LDG (L1-LDG) method is presented.

3.1. Semi-discrete LDG method. In order to introduce the LDG
formulation, at first we define some auxiliary variables as

o w0

p:%v q_ﬁx’ T_a.%" (31)
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then rewrite Eq. (@) as

ou t 0
Crha B1—1 1%
D —_—— t— —
o Dfu + e /0 (t—1) o dr
¢ or
B2—1 _
t— —dr =
+/0 (t—7) 9 dr = f,
ou
_ vu (3.2)
p ax7
_9
q ax7
r = @
3 oz’

Multiplying equations (@) by some smooth functions v,w,® and x
and integrating by parts over an element F; € &, result the following
formulation that holds for (u,p,q, )

((()JD?“’ U)Ei + [uv] 22—1 B <u, $>E:|
t I 2
- / A (

0 L

t T - 0
+/0 (t - 5)62 ! _[’I“U]mi_l B <T’ 7;}'

(p,w)p, = :[uw] N (u aw> . } : (3.3b)

] d¢ (3.3a)

(¢,9)p, = :[p lo = <p, M)E ] (3.3¢)

g =l ~ (e 5Y) (3.34)
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Now, the LDG scheme is defined as: find (up, pn, qn, ) € Vi X Vi, X V3 X
V}, as the approximation of (u, p, q,r) such that (up, pn, qn, 1) satisfies:

- A . 8
(OCDf‘uh,v)Ei + | [anv] iH - <uh’ 3:1:">El]

- [[e-gn

| _
o[-0z - (), ] ae= s

N x; 81)
[Pn] vy <ph7 aﬂi);;j dg§ (3.4a)

@mM&=T%Mz < 33&] (3.4b)

(qn, V) g, = -[phlﬂ (pm >E} (3.4c)

OﬁaX)Ei::tQhX] <Qh,a )z%]’ (3.4d)

The notations 4, p, ¢ and 7 denote the numerical fluxes which are defined
at interior interfaces (edges) as [14]

i=u", p=p", q=q, F=17, (3.5a)
and for the boundary faces
S — N _ ot
al =al =u| pl. =5, =p"| ,
o 3Y; 3Y; o xp o
3.5b
o T 2Y; o E3Y; o

These (alternative) numerical fluxes ensure stability and optimal con-
vergence rate. It should be noted that this choice is not unique and
other numerical fluxes such as the central numerical flux can also be
used.

3.2. Full-discrete FD-LDG method. Using (@) for temporal dis-
cretization and quadrature rules (R.7) in semi-discrete scheme (B.4), the

full-discrete FD-LDG method follows as: Find ( "+1, pZH, q,’f“ rZH) €

n+1 n+1l n+1l n+l)

Vi, x Vi, x V}, x V}, as the approximation of ( P g T r such
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that (un, pn, qn, 1) satisfies:

n

béa) nJrl7 ’U Z (b(a) _ bn+1 s) (/UJZ’ U)Ez' — bgLa) (U%a U) E;
s=0

ov
~n+1 —+1
e, - (0 5) ]

= [ ; v
o (B1) | [an—s+1, 1% n—s+1 YY
" ;) S Tt (ph 8:::) E; }

= [ AN—S x; n—s 8'1) n
+M2Zd§’82) [Th Hv]xi_l B (Th H’(%c) } _ (f +1 )E :
s=0 FE;

(3.60)
(Ph ), = :[ﬁiw] by T (ui, %)E ] , (3.6b)
R (3.60)
(i X) g, = :[dix] N (q‘i, gif)Ei ] : (3.6d)

for s =0,...,n4+ 1 and all v,w,y and x € Vj.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to show the accu-
racy of the proposed scheme. Assume that u and uy; be the exact and
approximation solution obtained by FD-LDG methods, respectively. Let
us define the Lo norm of the error, ej, = u — uy, as

lu = upll 2 = \//5 (u — up)? da, (4.1)

and the computational order (CO) is defined as bellow

lenlly, |
2 hl)

lenllzy |,

ln(,%)

In(
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Example 4.1. Consider the following fourth order time-fractional PI-
DEs:

ou

t
oCD?Hax—/O (t =& Aude )

+/t (t —5)62_1 A?udé = f, (z,t) € [0,1] x (0,1]
0

subject to zero initial condition and periodic BCs. The source term,
f, is a given function, so that the exact solution of this problem is as
follows

u(z,t) = t37% cos(2mz). (4.4)

The errors and computational order of the proposed scheme is reported
in Table m for k = 1,2 for different values of fractional orders of o, S
and f2. The Convergence plots of the scheme is presented in figure E

loglog(Ls error)

L L L L L L L
0.03 0.04 0.05 0.06 0.07 008 009 01

F1cure 1. Convergence plots of FD-LDG method with
k=1,2and a = 1 = B2 = 0.5 : Example @

The results show the accuracy of the scheme and the optimal con-
vergence rate, O(hk‘H), in the discrete Lo norm, where k represents the
degree of approximation polynomials.

5. CONCLUSION

Our proposed method for solving fourth-order time-fractional PI-
DEs uses a finite difference and local discontinuous Galerkin method,
which can be extended for high-dimensional cases and is suitable for
convection-dominated equations. The temporal term was discreted us-
ing the finite difference method (L1 formula) and the memory term was
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TABLE 1, Errors and CO of the FD-LDG methods (B.4)

for Eq. (@

) with & = 1,2: Example @

k=1 k=2
(a,B1,82) h lenllz, Co lenllz, Co
a=0.5 0 1.8916e-02 — 1.2201e-03 -
b1 =0.25 2710 4.7608e-03 1.9903 1.5310e-04 2.9944
Bo = 0.75 % 2.1195e-03 1.9958 4.5416e-05 2.9971
Zl() 1.1932e-03 1.9973 1.9172e-05 2.9978
a=0.5 Tl(] 1.8804e-02 - 1.2171e-03 —
61 =0.5 2710 4.7494e-03 1.9853 1.5319e-04 2.9900
B = 0.5 % 2.1170e-03 1.9928 4.5466e-05 2.9959
4—10 1.1924e-03 1.9953 1.9195e-05 2.9976
a=0.5 Tlo 1.8143e-02 — 1.1403e-03 —
51 =0.75 %0 4.6088e-03 1.9769 1.4700e-04 2.9555
B = 0.25 3*10 2.0626e-03 1.9828 4.4074e-05 2.9709
4—10 1.1650e-03 1.9857 1.8714e-05 2.9776

discreted using quadrature respectively. Finally, numerical experiments
have been carried out and they have demonstrated that the rate of con-
vergence is optimal.
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