
Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
https://doi.org/10.22080/cjms.2024.27550.1706
Caspian J Math Sci. 13(2)(2024), 311-318 (Research Article)

Topological Action on a Discrete Semi-group

Mohammad Taghi Heydari 1 and Hamid Rezaei
Department of Mathematics, College of Sciences, Yasouj University,

Yasouj-75918-74831, Iran

Abstract. Given a discrete semi-group S, a topological action θ
of S on a locally compact space X is defined. Additionally, there
is an action α of S on the C∗-algebra C0(X), which is introduced
in relation to θ. We explore the topological independence of θ and
the impact of θ on α. Finally, has been discussed the concept of a
semi-partial dynamical system (C0(X), S, α) and examine some of
its properties.
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1. Introduction

A unital inverse semigroup is a semigroup S with an element e such
that for every s in S, there exists a unique element s∗ in S with the
following properties:
(i) ss∗s = s;
(ii) s∗ss∗ = s∗.
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It is clear to see that the map s → s∗ is an involution. For instance,
let X be a set. A partially defined map on X refers to a bijective map
ϕ : A → B, where A = dom(ϕ) and B = rang(ϕ), and both A and
B are subsets of X. The set of all partial maps on X is denoted by
I(X). The multiplication on I(X) is given by the composition of partial
maps in the largest domain where it is meaningful. That is, if ϕ and
φ are elements of I(X), then dom(ϕφ) = φ−1(rang(φ) ∩ dom(ϕ)) and
rang(ϕφ) = ϕ(rang(φ) ∩ dom(ϕ)).

Every inverse semigroup is isomorphic to a semigroup of I(X) for
some X [4]. Additionally, let H be a Hilbert space and P (H) represent
the set of all partial isometries on H. Note that T ∈ B(H) is a partial
isometry if and only if T ∗T is a projection on (KerT )⊥. For T ∈ P (H),
let T ∗ be the Hilbert adjoint of T . Owing to the properties of partial
isometries, we have TT ∗T = T and T ∗TT ∗ = T ∗. In fact, if T ∈ P (H),
then the initial space of T is the range of T ∗T .

Let I and J be closed ideals in the C∗-algebra A, and let

α : I → J

be an isomorphism of the C∗-algebras. The triple (α, I, J) is referred to
as a partial automorphism of A. The set of all partial automorphisms
of the C∗-algebra A is denoted by Pa(A). Then, Pa(A) is a unital
inverse semigroup with the identity. It is well known that the adjoint is
the inverse and the product is the composition with the largest possible
domain.
In conjunction with the concept of partial actions, the idea of crossed
products emerged as a generalization in this theory (see [2], [3], [1],
[5], [6], and [8]). Following these works, an action of a unitary inverse
semigroup on the C∗-algebra is defined. Moreover, we consider a C∗-
algebra and subsequently the partial crossed product of this C∗-algebra
by that action.

Definition 1.1. [7] If A is a C∗-algebra and S is a unital inverse semi-
group, an action of S on A is a semigroup isomorphism:

β : S → Pa(A), s → (βs, Es∗ , Es)

such that Ee = A, where e is the identity of S. If s ∈ S and s2 = s,
then s is called an idempotent element. If s2 = s for all s ∈ S, then S
is an idempotent semigroup.

Lemma 1.2. Let S be a unital inverse semigroup, A be a C∗-algebra, β
be an action of S on A, and s ∈ S. Then βs∗ = β−1

s , βe is the identity
map on A, and if s is an idempotent, then βs is the identity map on
Es∗ = Es.
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Proof. Because β is a homomorphism, therefore

βs = β(s) = β(ss∗s) = β(s)β(s∗)β(s) = βsβs∗βs

On the other hand, β−1
s = βsβ

−1
s βs. So, by the uniqueness of the inverse

in inverse semigroups, it follows that βs∗ = β−1
s . Moreover,

βeβs = βes = βs = βse = βsβe

therefore βe = iA. If s is an idempotent, since s2 = s, we have sss =
s2 = s and ss∗s = s. So, by the uniqueness of the inverse of s, it follows
that s = s∗ and βs = βs∗ . On the other hand, (βs)2 = βsβs = βsβs∗ =
βe = i. □

Lemma 1.3. If β is an action of the unital inverse semigroup S on a
C∗-algebra A, then βt(Et∗Es) = Ets for all s, t ∈ S.

Proof. Since Et∗ and Es are ideals in the C∗-algebra A, we have Et∗Es =
Et∗ ∩ Es. So,

βt(Et∗Es) = βt(Et∗ ∩ Es) = image(βtβs)

= image(β(t)β(s))

= image(β(ts))

□

Remark 1.4. Let β be an action of the unital inverse semigroup S on
the C∗-algebra A. Consider L = {x ∈ `1(S,A) : x(s) ∈ Es}, the closed
subspace of `1(S,A). Define multiplication and involution on L by

(x ∗ y)(s) =
∑
rt=s

βr[βr∗(x(r))y(t)] and x∗(s) = βs[x(s
∗)∗].

Note that L is closed with respect to the above operations, since by
Lemma 1.3, elements of the form (x∗y)(s) are in Es for every s ∈ S and,
as a consequence, x∗y ∈ L. Also, for a given x ∈ L, since x(s) ∈ Es∗ and
Es∗ is an ideal of A, we have (x(s∗))∗ ∈ Es∗ . Therefore, βs(x(s∗)∗) ∈ Es,
so x∗ ∈ L. Simple computations show that ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗‖ =
‖x‖, where ‖.‖ denotes the norm of L inherited from `1(S,A).

The notion of partial group C∗-algebra of a discrete group introduced
by R. Exel in [3] is generalized to an idempotent unital inverse semi-
group, and the partial inverse semigroup C∗-algebra is defined. By us-
ing the algebras of multipliers of ideals of an associative algebra, It can
be proved some theorems in the C∗-algebra context without using the
identity.
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Definition 1.5. Let A be a C∗-algebra and S be a unital inverse semi-
group with the identity e. A partial action of S on A is a collection
{(αs, Ds , Ds) : s ∈ S} of partial automorphisms (denoted by α or by
(A,S, α)) such that

• De = A;
• αst extends αsαt, that is, αst|α∗

t (Ds∗) = αsαt for all s, t ∈ S.

Proposition 1.6. If β is a partial action of S on A, then,
• βe is the identity map i on A;
• βt = βt for all t ∈ S;
• βt(DtDs) = DtDts, ∀t, s ∈ S;
• βt(DtDs1Ds2 ...Dsn) = DtDts1Dts2 ...Dtsn, ∀t, s1, s2, ..., sn ∈ S.

Proof. Similar to Proposition 2.3, Lemma 2.4, Lemma 2.5, and Theorem
2.6 of [7] □
Definition 1.7. Let β be a partial action of S on A. A covariant
representation of β is a triple (π, u,H), where H is a Hilbert space and
π : A → B(H) is a non-degenerate representation, and for each s ∈ S,
us is a partial isometry on H with initial space π(Ds)H and final space
π(Ds)H, such that

• usπ(a)us = π(βs(a)) for all a ∈ Ds ;
• usth = usuth for all h ∈ π(DtDts)H.

The class of all covariant representations of (A,S, β) is denoted by
CovRep(A,S, β).

Definition 1.8. [2] Let (π, v,H) ∈ CovRep(A,S, β). We define the
operator π × v : L → B(H) by

(π × v)(x) =

∫
S
π(x(s))vsds.

where ds denotes the Haar measure on S. If S is a discrete group, then,

(π × v)(x) =
∑
s∈S

π(x(s))vs.

Definition 1.9. [7] Let A be a C∗-algebra and β be an action of the
unital inverse semigroup S on A. We define a seminorm ‖ · ‖c on L by

‖x‖c = sup{‖(π × v)(x)‖ : (π, v) ∈ CovRep(A,S, β)}.
Let I = {x ∈ L : ‖x‖c = 0}. The crossed product A ×β S of the
C∗-algebra A and the semigroup S by the action β is the C∗-algebra
obtained by completing the quotient L/I with respect to ‖ · ‖c.

It is clear that the quotient map x 7→ x + I is contractive. In fact,
‖x+ I‖ ≤ ‖x‖.
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2. Main result

In the last two decads, the notion of a partial crossed product of a
C∗-algebra by a discrete group was defined by McClanahan [5] as a gen-
eralization of Exel’s definition in [1]. The more well-established notion
of the crossed product of a C∗-algebra by an action of a group uses a
homomorphism into the automorphism group of the C∗-algebra. The
idea of a partial action is to replace the automorphism group by the
inverse semigroup of partial automorphisms. A partial automorphism is
an isomorphism between two closed ideals of a C∗-algebra. Of course we
cannot talk about a homomorphism from a group into an inverse semi-
group; a partial action is an appropriate generalization. In this section
a detailed discussion of action on a discrete semigroup will be presented.

A semipartial dynamical system is a triple (A,S, α) consisting of a
C∗-algebra A, a unital inverse semigroup S, and an action α of S on A.
In this section, we will focus on the specific case of (C0(X), S, α), where
X is a locally compact Hausdorff space, and α is the action of C0(X)
arising from partial homeomorphisms of X. For every s ∈ S, there exists
an open subset Us of X and a homeomorphism θ : Us∗ → Us such that
Ue = X, and θe is the identity map on X. The action α of S on C0(X)
corresponding to the partial homeomorphism θ is given by the formula:

αs(f)(x) = f(θs∗(x)), s ∈ S, f ∈ C0(Us∗).

The above facts are summarized with the following definition:

Definition 2.1. Let S be a unital inverse semigroup, and X be a locally
compact Hausdorff space. A topological action of S on X is a pair
θ = ({Us}s∈S , {θs}s∈S), where for each s ∈ S, Us is an open subset of X,
θs : Us∗ → Us is a homeomorphism, and Ue = X and θe is the identity
map on X.

Given a topological action ({Us}s∈S , {θs}s∈S) of a semigroup S on a
locally compact Hausdorff space X, we can identify each Es = C0(Us),
in the usual way, with the ideal of functions in C0(X) vanishing on
X − Us. Using this identification, we can define the action α of S on
C0(X) corresponding to the topological action θ as follows:

αs(f)(x) := f(θs∗(x)), f ∈ C0(Us∗)

where s∗ denotes the inverse of s in S.
Now the notion of a topologically free action is defined as follows:

Definition 2.2. The topological action θ of S on X is said to be topo-
logically free if the set of fixed points for the partial homeomorphism
associated with each non-trivial semigroup element has empty interior.
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In summary, an action of a semigroup on a locally compact Hausdorff
space induces an action on the space of continuous functions vanishing
at infinity, and we say that the original action is topologically free if the
fixed point sets of its non-trivial semigroup elements have empty interior.
Note that Fe = {x ∈ X : θe(x) = x} = {x ∈ X : I(x) = x} = X and
Xo = X, so Fe hasn’t empty interior. Therefore, in Definition 2.2, s 6= e.

Theorem 2.3. The topological action θ of a unital inverse semigroup
S on X is topologically free if and only if for every s ∈ S − {e}, the set
Fs is nowhere dense.

Proof. The ”if” part is trivial. For the ”only if” part, assume that θ is
topologically free and let x ∈ Us∗ be a limit point of Fs relative to Us∗ .
Then, there is a net xi ⊂ Fs such that xi →cl x. By continuity of θs, we
have xi = θs(xi) → θs(x), and so θs(x) = x. Therefore, x ∈ Fs. Since
Fs is closed in X relative to Us∗ , it follows that Fs = C ∩ Us∗ for some
closed subset C of X. If V is open and V ⊂ Fs, then

V ∩ Us∗ ⊂ Fs ∩ U∗ = (C ∩ Us∗) ∩ Us∗ ⊆ C ∩ Us∗ = C ∩ Us∗ = Fs.

Since Fs is nowhere dense in X and V ∩ U∗ is open in X, we see that
V ∩ U∗ = ∅. Thus, the open sets Us∗ and V are separated. Moreover,
since V ⊂ Fs = (C ∩ Us∗) ⊆ C ∩ Us∗ ⊂ Us∗ , we see that V = ∅.
Therefore, Fs is nowhere dense in X. □

The following equivalent formulation of topological freeness better
suits our objectives:

Corollary 2.4. The topological action θ of a unital inverse semigroup S
on a space X exhibits topological freeness if and only if, for every finite
subset {s1, s2, ..., sn} of S−e, the union

∪n
i=1 Fsi has an empty interior.

In the remainder of this work, we denote by δs, s ∈ S the function in
LA that takes the value 1 at s and zero for all other elements of S.

Theorem 2.5. Let s ∈ S−e, f ∈ Es = C0(Us), and x0 /∈ Fs. For every
ε > 0, there exists h ∈ C0(X) such that:

(i) h(x0) = 1;
(ii) ‖h(fδs)h‖ ≤ ε, and
(iii) 0 ≤ h ≤ 1.

Proof. By embedding C0(X) ↪→ C0(X) × S with h 7−→ hδe, we con-
sider h(fδs)h = (hδe)(fδs)(hδe) as an element of C0(X) × S. Thus,
h(fδs)h = (hf)δs.(hδe) = αs(αs∗(hf)h)δs. Additionally, αs∗(hf)(x) =
(hf)(θs(x)) = h(θs(x))f(θs(x)). If x ∈ support(αs∗(hf)), then, θs(x) ∈
support(h). □
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Definition 2.6. If A is a C∗-algebra and B is a C∗-subalgebra of A,
then by a conditional expectation from A to B, we mean a continuous
positive projection P of A onto B that satisfies the conditional expecta-
tion property

P (ba) = bP (a) and P (ab) = P (a)b, a ∈ A, b ∈ B.

Example 2.7. Let A be a C∗-algebra with identity 1 and ρ be a state
on A. Set B = C.1 and define P : A → B by P (a) = ρ(a).1. Then,
P is a conditional expectation. Furthermore, if G is a compact group
that acts continuously as a group of automorphisms of A, and M is
the subalgebra of elements that are invariant under the action of G, let
P : A → M be defined by P (a) :=

∫
G x(a)dx. Then P is a conditional

expectation. For an explicit example of a conditional expectation, let
B = iAi for a self-adjoint idempotent i ∈ A, and define P : A → B by
P (a) = iai.

We can consider C0(X) as a C∗-subalgebra of the partial crossed prod-
uct C0(X)×αS. Therefore, the conditional expectation from C0(X)×αS
onto C0(X), which is denoted by E, is meaningful.

Definition 2.8. A semi-partial dynamical system (A,S, α) is said to be
topologically free if, for every s ∈ S − e, the set Fs := {x ∈ Us∗ : θs(x) =
x} has an empty interior.

It is well-known that (see [9]) a crossed product by a partial action is a
graded C∗-algebra. Since the conditional expectation E : C0(X)×αS →
C0(X) is contractive, we can state and prove the following theorem.

Theorem 2.9. If (C0(X), S, α) is a topologically free semi-partial dy-
namical system, then for every c ∈ C0(X) ×α S and ε > 0, there exists
h ∈ C0(X) such that:

(i) ‖hE(c)h‖ ≥ ‖E(c)‖ − ε;
(ii) ‖hE(c)h− hch‖ ≤ ε, and
(iii) 0 ≤ h ≤ 1.

Proof. Let c be a finite linear combination of the form
∑

t∈T atδt, where
T denotes a finite subset of S. Define E(s) = ae if e ∈ T and E(s) = 0
if e /∈ T . Since

‖ae‖ = sup{|ae(x)| : x ∈ X},
for given ε > 0, the set V = {x ∈ X : |ae(x)| ≥ ‖ae‖− ε} is a non-empty
open set. Since the topological action α is topologically free, there exists
x0 ∈ V such that x0 /∈ Ft for every t ∈ T . Take ft = atδt ∈ Dt, for ϵ

n(T ) ,
there exist functions ht such that

ht(x0) = 1, ‖ht(atδt)ht‖ ≤ ε

n(T )
and 0 ≤ ht ≤ 1.



318 M. T. Heydari, H. Rezaei

Let h =
∏

t∈T−e ht. Obviously 0 ≤ h ≤ 1, which means (iii) holds. Also
(i) holds, simply because x0 ∈ V and

‖haeh‖ = suph(x)ae(x)h(x) : x ∈ X

≥ |h(x0)ae(x0)h(x0)|
= |ae(x0)| > ‖ae‖ − ε.

In order to prove (ii), we have

‖haeh− hch‖ = ‖haeh−
∑
t∈T

hatδth‖

= ‖
∑

t∈T−e

hatδth‖

≤
∑

t∈T−e

‖hatδth‖ < n(T ).
ε

n(T )
= ε.

For an arbitrary element c, since c is the limit of a net in C0(X) ×α S
and E is contractive, a standard approximation argument finishes the
proof. □
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