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Abstract. This article examines the transmission of COVID-19 from a mathe-
matical model perspective, analyzing its spread pattern. Given the virus’s adher-
ence to standard epidemic disease transmission principles and the effectiveness of
vaccination in mitigating and controlling its spread, we employ the SVIR model
to demonstrate the disease’s progression in Yazd. The data used in this study
was provided by the medical care monitoring center of Yazd Shahid Sadoughi
University of Medical Sciences, Yazd, Iran, for 770 days between September 27,
2020 to November 5, 2022. To establish the parameters, we utilized the genetic
algorithm (GA) to minimize the cost function between the model’s prediction and
the real data. Additionally, we conducted our simulations using Matlab software.
Identifying the factors that contribute to the spread of the virus through mathe-
matical modeling can be a crucial step towards controlling the disease, given its
catastrophic impact on the economy, society, and health.
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1. Introduction

The COVID-19, an abbreviation for Coronavirus Disease 2019, is an exception-
ally transmissible respiratory sickness instigated by the newly discovered coron-
avirus, SARS-CoV-2. It emerged initially in December 2019 in Wuhan, China
[12, 19, 20, 21]. It rapidly spread globally, leading to a pandemic. Iran reported its
first confirmed cases of COVID-19 on February 19, 2020 [1]. The source of the ini-
tial infections in Iran is believed to be from individuals who had traveled to affected
areas or had direct contact with infected individuals. In response to the growing
COVID-19 threat, Iran swiftly implemented various quarantine measures to contain
the spread of the virus. On February 27, 2020, the Iranian government imposed na-
tionwide lockdowns, restricted travel, and closed schools, universities, and religious
sites. These measures aimed to limit social interactions, enforce physical distanc-
ing, and promote personal hygiene practices [2, 14]. Additionally, Iran established
screening checkpoints at airports and borders, implemented contact tracing pro-
tocols, and conducted extensive testing to identify and isolate infected individuals
promptly. These measures were vital in controlling the transmission of the virus
and reducing the burden on healthcare systems.

Yazd City, located in central Iran, reported its first case of COVID-19 on March
2020. As it is situated at the center of Iran, this area serves as the primary route
for travelers to access other regions, making it a crucial factor in the spread of
Covid-19. [10]. Following the initial report, health authorities in Yazd City swiftly
initiated a series of comprehensive measures to address the situation. In response
to the COVID-19 outbreak, local authorities in Yazd City implemented stringent
quarantine measures to limit the spread of the virus. These measures included the
closure of non-essential businesses, schools, and public spaces. Travel restrictions
were also imposed to prevent further transmission within and outside the city. The
authorities worked closely with healthcare professionals to conduct extensive testing,
contact tracing, and isolation of confirmed cases to curb the outbreak’s progression.
In addition to quarantine measures, public health campaigns were launched to raise
awareness about COVID-19 symptoms, prevention strategies, and the importance
of hygiene practices such as handwashing and mask-wearing.

To understand the dynamics and spread of the coronavirus, scientists and re-
searchers turned to mathematical modeling, for example see [3, 4, 11, 17, 22] and
references therein. Developed in the early 20th century, the SIR model represented a
breakthrough in understanding the spread of infectious diseases by dividing the pop-
ulation into three distinct compartments [6, 9, 15]. Although short-term prediction
of disease was anticipated by the SIR model, this model could not accurately predict
the long-term spread and pattern of the epidemic. Interestingly, many SIR models
published for other communities to forecast COVID-19 also faced similar discrepan-
cies [13]. Therefore, for a more accurate estimate, a model with more assumptions is
needed. On the other hand, vaccination is considered an effective strategy to prevent
COVID-19 and control the spread of the disease [5]. Hence, SVIR model provides
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valuable insights into the transmission and progression of infectious diseases like
COVID-19.

In this paper, we consider an SVIR model to fit the COVID-19 data from Yazd
city. Given that these types of models are unimodal, we divide the time period into
five intervals. Each interval contains a single peak, and by fitting the model to the
data of each interval, we estimate the model parameters using a genetic algorithm.
To utilize the genetic algorithm, we need to define a cost function, which we consider
as the sum of the squared errors between the real data and the number of infectious
individuals obtained from the model. We then solve the system using numerical
methods for solving differential equations. Numerical simulations are performed
using the ode45 solver in MATLAB. The results are then compared and validated
against real-world data from Yazd city in Iran. The ode45 function in MATLAB is
based on an adaptive step size Runge-Kutta method known as the Dormand-Prince
method. The Dormand-Prince method uses a fifth-order method to estimate the
error and a fourth-order method for the solution. This allows the solver to adjust
the step size dynamically to achieve a specified accuracy [16].

The rest of the paper is organized as follows: Section 2 introduces the model and
investigates the existence, uniqueness, and positivity of the solutions. Additionally,
we analyze the stability of the equilibrium points. In Section 3, we examine the data
and fit the model accordingly, estimating the model parameters and their confidence
intervals for each of the five time periods. The paper ends with the Conclusion
section.

2. The model

Although the classic SIR model is a simplistic compartmental model that can
describe the spread of a virus in a community, it fails to account for the impact
of a vaccinated population on the dynamics of susceptible (S), infected (I), and
removed (R) individuals. In this study, we aim to investigate the spread of a virus,
such as COVID-19, and its relationship with varying levels of vaccination across
interconnected communities. To achieve this, we adopt the susceptible-vaccinated-
infected-removed (SVIR) model introduced by Tornatore et al. in [18]:

dS

dt
= η − αSI − (η + σ)S,

dV

dt
= σS − ϑαIV − ηV, (2.1)

dI

dt
= αSI + ϑαIV − (λ+ η)I,

dR

dt
= λI − ηR.

The SVIR model (2.1) is based on the classic SIR model but includes modifications
to account for vaccination programs. Specifically, the model considers the impact of
a vaccine that does not lose its efficacy over time and assumes that a fraction σ of
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the susceptible population, S, is vaccinated in each unit of time. The vaccination
may reduce but not eliminate susceptibility to infection, so the model includes a
factor ϑ, where 0 ≤ ϑ ≤ 1, in the contact rate of vaccinated individuals, V , with
ϑ = 0 corresponding to perfect vaccine efficacy and ϑ = 1 to no effect. Parameter λ
is the rate of recovered individuals in the community, η is the birth and death rate,
and α is the transmission rate of susceptible to infected individuals.

The model also assumes permanent immunity, such that a fraction λ of infected
individuals, I, returns to the removed population, R. Additionally, the model con-
siders constant rates of births and deaths, with all newborns entering the susceptible
population, S. Therefore, all parameters in the model, including η, λ, σ, and α, are
positive real numbers.

Motivated by the work in [4, 18], we introduce the following system of coupled
ODEs:

dS

dt
= −αSI − σS,

dV

dt
= σS − ϑαIV,

dI

dt
= αSI + ϑαIV − λI, (2.2)

dR

dt
= λI.

This model is based on several key assumptions:
• The population is homogeneous and only a single disease is spreading among

them.
• All parameters, including the transmission rate from susceptible to infected

individuals (α), vaccine efficacy parameters (ϑ), the fraction of the suscepti-
ble population that is vaccinated (σ), and the recovery rate (λ), are positive.

• The rate at which new susceptible individuals join the population (through
births or migration) is equal to the rate at which individuals leave the pop-
ulation (through deaths or migration), so these rates are not included in the
model.

• Given that the vaccine does not provide complete immunity, a percentage of
vaccinated individuals may still become infected and fall ill when exposed to
the disease.

The SVIR model incorporates a vaccinated compartment, which is crucial for accu-
rately modeling the impact of COVID-19 vaccination campaigns on the spread of
the virus. This is particularly relevant for Yazd city, where significant vaccination
efforts were undertaken during the study period. By dividing the population into
four distinct compartments—susceptible, vaccinated, infected, and recovered—the
SVIR model allows for a detailed analysis of how different segments contribute to
the epidemic.
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Figure 1. Schematic flow diagram of the SVIR model.

The flexibility of the SVIR model enables it to be adapted to various epidemic
scenarios by adjusting parameters, making it suitable for the dynamic nature of the
COVID-19 pandemic. This adaptability is crucial for reflecting local conditions,
vaccination rates, and other factors specific to Yazd city. Additionally, the model is
well-suited to the available infection data, allowing for effective parameter estimation
and validation. The robustness and predictive power of the SVIR model make it a
reliable tool for forecasting the epidemic’s future course and assessing the impact of
public health interventions, which is critical for informing policy decisions in Yazd
city. The system of equations (2.2) is obtained by modifying the original single
SVIR model (2.1) with the assumption that there are no births or deaths in the
community except for those caused by the virus, similar to the classic SIR model.
This is achieved by setting η = 0. It is important to note that in the modified model
(2.2), the sum of susceptible, vaccinated, infected, and removed individuals is always
equal to the total population, denoted by N , which remains constant over time.
Therefore, the SVIR model provides a more realistic representation of virus spread
in a vaccinated population than the classic SIR model. The population-flux diagram
in Fig. 1 illustrates how the four populations in the system of equations (2.2) interact
with each other within a community, representing the transfer of individuals between
susceptible, vaccinated, infected, and removed groups.

2.1. Existence, uniqueness and boundedness of solutions. This subsection
examines the analytical properties of solutions for our proposed epidemic model. The
solution must be nonnegative and bounded. We will explore these characteristics
below.

First, we define

Γ = {(S, V, I, R) ∈ R4 : S ≥ 0, V ≥ 0, I ≥ 0, R ≥ 0, S + V + I +R = 1}.

In the following, we prove that the solution remains in Γ.
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Theorem 2.1. (Theorem 2.1, [18]) If (S(0)V (0), I(0), R(0)) ∈ Γ, then there exists
T > 0 and a unique solution (S(t), I(t), V (t), R(t)) to the system (2.1) on t ∈ [0, T )
almost surely.

Now, Theorem 2.1 implies following theorem about boundedness of solution in Γ.

Theorem 2.2. Suppose (S(t), I(t), V (t), R(t)) be a solution of system (2.1) on [0, T ).
If S(τ) > 0, V (τ) > 0, I(τ) > 0, R(τ) > 0, for all τ ∈ [0, T ), then

0 < S(τ) < 1, 0 < V (τ) < 1, 0 < I(τ) < 1, 0 < R(τ) < 1, ∀τ ∈ [0, T ).

Proof. From system (2.1), we have d
dt

(
S(t)+V (t)+I(t)+R(t)

)
= 0. This means the

total population is constant, that is, S(t) + V (t) + I(t) +R(t) = 1 for all 0 < t < T .
Now, we choose an integer c0 > 4 sufficiently large such that (S(0)V (0), I(0), R(0)) ∈
[ 1c0 , c0]

4. In this step for each integer c > c0, we define

Tk = inf{t ∈ [0, t) : (S(t), I(t), V (t), R(t)) /∈ [
1

c
, c]4},

where Tk is stopping time. Hence, by using the idea exposed in [7, 18] the proof
become complete. □

2.2. Equilibria and stability. In this subsection, we investigate the stability of
equilibrium points of model (2.2). Since, R dose not appear in three first equation
in the model we can reduced our model to the following three dimensional system

dS

dt
= −αSI − σS,

dV

dt
= σS − ϑαIV, (2.3)

dI

dt
= αSI + ϑαIV − λI.

As we mentioned above, we suppose the total population remains constant in
time and without loss of generality, that M = 1, which results in E0 = (0, 1, 0). The
eigenvalues of the Jacobian of system (2.3) at E0 are 0, −σ and ϑα−λ. Therefore, E0

is stable if ϑα−λ < 0 as σ is positive. Here, one can calculate the basic reproduction
number R0 = ϑα

λ . Therefore, if R0 < 1, E0 is stable, and if R0 > 1, E0 is unstable
as there is one positive eigenvalue, i.e., ϑα−λ > 0. Hence, system (2.3) has a stable
DFE for R0 < 1 and an unstable one for R0 > 1.

For some illustration, we investigate trajectories of system (2.2) in the vicin-
ity of equilibrium points. IndeedSpecifically, this model has only the disease-free
equilibrium point (DFE) E0 = (0, 1, 0, 0), which is present for any constant total
population M . Since the sum of time-derivatives of S, V , I, and R equals zero, we
have S + V + I +R = M , which implies that the total population remains constant
over time. We assume that M = 1 without loss of generality. We plot solutions of
system (2.2) for α = 0.7, σ = 0.02, ϑ = 0.9 and λ = 0.5 in Fig. 2.
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Figure 2. Solutions of system (2.2) for α = 0.7, σ = 0.02, ϑ = 0.9
and λ = 0.5.

3. Materials and Methods

In this part of the investigation, the objective is to ascertain the model’s param-
eters to ensure that the simulated data closely mirrors the actual data, followed by
utilizing the refined model to assess and forecast the future spread of COVID-19.
Within this model framework, population size is held as constant. In other words,
we assume that N does not change. We also employed the Runge-Kutta algorithm
with the ode45 command in MATLAB software to solve the model. Furthermore, in
order to ensure that the model accurately reflects the actual data and enables precise
comparisons and analyses, a time step length of one is utilized to solve the system
of differential equations. To solve the system of equations (2.2) using ode45, we
select the initial condition (1 − I0, I0, 0, 0) for each period, where I0 represents the
number of infected people on the first day of the period. As mentioned earlier, each
period is characterized by a peak, and since the start of the period is considered the
start of the peak, this choice of initial condition is reasonable.

In order to determine the parameters, the genetic algorithm (GA) is employed
to minimize the cost function between the model’s prediction and the actual data.
The cost function, which is based on the mean squared error of the infected data, is
formulated accordingly. All simulations were performed using MATLAB R2022a.

3.1. Epidemiological data. The data used in this study was provided by the med-
ical care monitoring center of Yazd Shahid Sadoughi University of Medical Sciences,
Yazd, Iran. This data consists of the daily hospitalized cases from Yazd citiy. The
population of the study area is approximately 600,000. We consider all the patients
who have PCR tested positive as the infectious category.

3.2. Main results. Epidemic models are commonly used to study the spread of
infectious diseases over short periods of time. The behavior of the patient population
is often modeled as a Gaussian function, starting from a low value, reaching a
maximum value (peak), and then decreasing. However, the behavior of the infected
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Figure 3. Number of daily infected individuals in the Yazd city for
770 days between September 27, 2020 to November 5, 2022.

population during an epidemic may not always follow this pattern. Fig. 3 shows that
the behavior of the infected population may have several maximum values, making
it difficult to estimate the overall behavior of the epidemic during this time interval
with a set of parameter values. This highlights the challenges in mathematically
modeling the outbreak and designing policy, especially in the presence of known
biases in the data and complexities of the underlying dynamics.

The SVIR model is designed to capture the dynamics of an epidemic, where a
susceptible population is infected by infected individuals, recovered individuals gain
immunity, and the spread of the disease slows down over time. This aligns with
the general trend observed in the graph, where the number of infected individuals
initially increases, reaches a peak, and then declines. On the other hands, the SVIR
model typically has a unimodal shape, with a single peak representing the epidemic’s
peak. While the data shows five peaks over the 770-day period. Therefore, the time
period can be divided into 5 periods based on the number of disease peaks (or local
maximum in Fig. 3).

• The first period is from September 27, 2020, to March 20, 2021, which is 175
days.

• The second period is from March 21, 2021, to June 20, 2021, which is 92
days.

• The third period is from June 21, 2021, to January 8, 2022, which is 202
days.

• The fourth period is from January 9, 2022, to July 12, 2022, which is 185
days.

• The fifth period is from July 13, 2022, to November 5, 2022, which is 116
days.

Moreover, to compare the model estimate of a disease with the real data in a certain
period and by considering the total population constant in that period, the data used
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are normalized in the range of zero to one. Normalization is a statistical technique
used to adjust data to a common scale, which allows fair comparisons between model
estimates and actual data, as it takes into account population size and population
stability over time. This approach is commonly used in epidemiological studies to
quantify disease incidence.

The bootstrap method was employed to calculate the confidence intervals for es-
timating the four parameters of the SVIR model due to its flexibility and robustness
[8]. This non-parametric approach involves repeatedly resampling the data with
replacement to create numerous pseudo-datasets, each used to estimate the parame-
ters. By analyzing the distribution of these parameter estimates, we derive empirical
confidence intervals that provide insight into the uncertainty of our estimates. The
bootstrap method is particularly advantageous in this context because it does not
rely on traditional parametric assumptions about the data distribution, which can
be unknown or complex. This makes the bootstrap method highly suitable for mod-
els like SVIR, where the underlying dynamics can be intricate and the data may
not conform to simple distributional forms. The resulting confidence intervals are
therefore reliable and reflective of the true variability in the data, enhancing the
credibility and accuracy of the parameter estimates for the SVIR model. We calcu-
late the confidence intervals for the model parameters and present them for a period
of 5 time intervals.

The Fig. 4 displays a comparison between the number of confirmed cases in
Yazd and the SVIR model during the first period, which lasted from September 27,
2020, to March 20, 2021. The blue circles are reported daily data from infected
individuals and the solid red line is simulation of the SVIR model. In Fig. 4, we
see a huge jump in the number of infected people in Iran. This jump due to the
beginning of the fall season and also the beginning of the academic year, followed
by the symmetry of another infectious disease such as influenza, was predicted by
experts and researchers in advance. But this jump was much more than everyone’s
imagination and prediction. With the peak of the disease, preventive measures in-
tensified. Then, with the quarantine and the virtualization of educational activities,
the number of infected people decreased. The estimated parameters of the SVIR
model are α = 0.73753, σ = 0.020787, ϑ = 0.76978 and λ = 0.64097.

In the first time period the resulting confidence intervals for the parameters are as
follows: for α5, the 95% confidence interval is [0.23054, 0.8622]; for σ, the confidence
interval is [0.0116, 0.417]; for ϑ, the confidence interval is [0.0036, 0.81844]; and for
λ, the confidence interval is [0.00043, 0.7182].

The Fig. 5 shows a good estimation of the SVIR model from the infected individ-
uals of the Yazd city from March 21, 2021, to June 20, 2021. The maximum point
of this period occurs in April 14, 2021. Considering that people were in quarantine
for about 6 months, they were tired of staying at home, and in March 2019, due
to the two-week holiday on the occasion of Nowruz, despite health warnings about
social distancing, some health and Quarantine was not observed and therefore the
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Figure 4. Comparison between the number of confirmed cases
in Yazd and the SVIR model in the first period from Septem-
ber 27, 2020, to March 20, 2021. The estimated parameters are
α = 0.73753, σ = 0.020787, ϑ = 0.76978 and λ = 0.64097.

number of infected reached its peak again in June 2021. The estimated parameters
are α = 0.30555, σ = 0.087954, ϑ = 0.11217 and λ = 0.064819. In this period, the
resulting confidence intervals for the parameters are as follows: for α, the 95% con-
fidence interval is [0.2405, 0.9829]; for σ, the confidence interval is [0.01041, 0.2739];
for ϑ, the confidence interval is [0.0136, 0.7727]; and for λ, the confidence interval
is [0.0324, 0.7764]. These intervals are reflective of the true variability in the data,
thereby enhancing the credibility and accuracy of the parameter estimates for the
SVIR model.

In the third period, Yazd experienced a rise in COVID-19 cases around June 21,
2021, coinciding with the start of summer and school closures. Urgent and stricter
measures and vaccination may have been implemented to control the situation, lead-
ing to a faster decline in infections compared to previous waves. The curve fitting
in this period shown in Fig 6. The estimated parameters are α = 0.80263, σ =
0.25389, ϑ = 0.48436 and λ = 0.388. The resulting confidence intervals for the
parameters are as follows: for α, the 95% confidence interval is [0.3378, 0.9896];
for σ, the confidence interval is [0.1033, 0.4188]; for ϑ, the confidence interval is
[0.0693, 0.7242]; and for λ, the confidence interval is [0.0426, 0.6235].

The estimated parameters for the 4th period are as follows: α = 0.99985, σ =
0.038443, ϑ = 0.48121, and λ = 0.66579. The 95% confidence intervals for these
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Figure 5. Comparison between the number of confirmed cases in
Yazd and the SVIR model in the second period from June 21, 2021,
to January 8, 2022. The estimated parameters are α = 0.30555, σ =
0.087954, ϑ = 0.11217 and λ = 0.064819.

Figure 6. Comparison between the number of confirmed cases in
Yazd and the SVIR model in the third period from June 21, 2021,
to January 8, 2022. The estimated parameters are α = 0.80263, σ =
0.25389, ϑ = 0.48436 and λ = 0.388.
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Figure 7. Comparison between the number of confirmed cases in
Yazd and the SVIR model in the forth period from January 9, 2022,
to July 12, 2022. The estimated parameters are α = 0.99985, σ =
0.038443, ϑ = 0.48121 and λ = 0.66579.

parameters are:

α : [0.2845, 1.0001], σ : [0.0103, 0.1280],

ϑ : [0.2210, 0.7158], λ : [0.3717, 0.7545].

The estimated parameters for the 5th period are as follows: α = 0.31935, σ =
0.082176, ϑ = 0.12697, and λ = 0.10583. The 95% confidence intervals for these
parameters are:

α : [0.3057, 0.9251], σ : [0.0261, 0.1976],

ϑ : [0.0777, 0.6604], λ : [0.0883, 0.6895].

In the fourth and fifth periods (see Figures 7 and 8 ), there is a peak on the 20th
day from the start of the period, followed by a decrease in the number of patients,
eventually approaching zero. Figures 4 to 8 clearly demonstrate that the SVIR model
aligns closely with the data. Additionally, we infer that if we select the starting point
of the model where the number of infected individuals is initially increasing within
the period, this model effectively captures the behavior and dynamics of the infected
population.
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Figure 8. Comparison between the number of confirmed cases in
Yazd and the SVIR model in the fifth period fromJuly 13, 2022, to
November 5, 2022, The estimated parameters are α = 0.31935, σ =
0.082176, ϑ = 0.12697 and λ = 0.10583.

4. Conclusion

The SVIR is a relatively simple model with a clear interpretation. Each com-
partment (Susceptible, Infected, Vaccinated, Recovered) represents a well-defined
stage of the disease. This simplicity allows researchers to understand how changing
parameters (e.g., transmission rate) affects the spread of the disease. Under certain
assumptions, SVIR can be used to predict the future course of an outbreak, help-
ing with public health planning and resource allocation. From mathematical view
point, the SVIR model assumes a homogenous population with constant transmis-
sion rates. These assumptions may not hold true for the entire 770 days, especially
if there were significant changes in population behavior or the virus itself. On the
other hands, the SVIR model typically has a unimodal shape, with a single peak
representing the epidemic’s peak. While the data shows five peaks over the 770-day
period. Therefore, the time period can be divided into 5 periods based on the num-
ber of disease peaks. In each period we estimate parameters of the model and fit
the solution of SVIR model with the data. The figures show that the model fits the
data well in each period.

To the best of our knowledge, papers that apply mathematical models to COVID-
19 data typically focus on short time, estimating model parameters for small du-
rations. Thus far, the SVIR model has not been utilized with any dataset. The
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concept of segmenting an extended timeframe into smaller intervals, spanning ap-
proximately 300 days, grounded in the SIR model, has only been validated in [22],
albeit with fewer peaks. Despite numerous constraints and a considerable number
of model parameters, we successfully aligned the data with the model. It should be
noted, the accuracy of the model will depend on the quality of the data on infected
individuals. Reporting inconsistencies or missing data can affect the fitted model.

It is noteworthy that, according to the parameter estimates of the model, during
a distinct period characterized by a single peak, the onset of the upward trend in
case numbers marks the beginning of the period of interest. Consequently, a reliable
estimation of the peak value becomes attainable. This facilitates the implementation
of suitable public health interventions aimed at curbing the spread of the disease.

While our current work offers valuable insights using ordinary differential equa-
tions, we recognize the advantages of fractional order models in capturing memory
effects and complex dynamics observed in real-world epidemic data. Therefore, fu-
ture research will extend our model to incorporate fractional calculus, enhancing
its flexibility and precision. This approach aims to provide a deeper understanding
of the temporal dynamics and long-term behavior of the epidemic, contributing to
both theoretical advancements and practical public health strategies for managing
COVID-19 and similar infectious diseases.
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