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1. Introduction

In a Riemannian manifold (Ṽn, g), the concept of conformal Ricci flow is defined as
a generalisation of the classical Ricci flow [12]

∂g

∂t
= −2(R̃ic+

g

n
)− p̃g, τ(g) = −1, (1.1)

where p̃ define a time dependent non-dynamical scalar field (also called the conformal
pressure), g is the Riemannian metric, and τ and R̃ic denote the scalar curvature
and the Ricci tensor of Ṽn, respectively.
A conformal Ricci soliton on (Ṽn, g) is defined as follows [5]:

LEg + 2R̃ic = [
1

n
(p̃n+ 2)− 2µ]g, (1.2)

where LE , E and µ indicate the Lie-derivative operator, a smooth vector field, and
a constant, respectively. A new class of geometric flow called Ricci-Yamabe flow of
type (κ, l), which is a scalar combination of Ricci and Yamabe flow is given by [14]:

∂

∂t
g(t) = 2κR̃ic(g(t))− lτ(t)g(t), g(0) = g0, (1.3)

for some scalars κ and l.

Definition 1.1. g, the Riemannian metric is named the Ricci-Yamabe soliton of
type (κ, l) (briefly, (RYS))[9] if

LEg + 2κR̃ic+ (2µ− lτ)g = 0, (1.4)

where l, κ, µ ∈ R.

Definition 1.2. g, the Riemannian metric is said to be the conformal Ricci-Yamabe
soliton (briefly, (CRYS))[33] if

LEg + 2κR̃ic+ [2µ− lτ − 1

n
(p̃n+ 2)]g = 0, (1.5)

A Riemannian manifold (Ṽn, g) is said to be conformal η-Ricci-Yamabe soliton
(briefly, (CERYS)) if

LEg + 2κR̃ic+ [2µ− lτ − 1

n
(p̃n+ 2)]g + 2νη ⊗ η = 0, (1.6)

where l, κ, µ, ν ∈ R and and η is a 1-form on Ṽn.
A CRYS (or gradient CRYS) is said to be shrinking, steady or expanding if µ < 0, =
0 or > 0, respectively. A CERYS (or gradient CERYS) reduces to (i) conformal
η-Ricci soliton if κ=1, l=0, (ii) conformal η-Yamabe soliton if κ=0, l=1, (iii)
conformal η-Einstein soliton if κ=1, l=-1.
In [27], introduced the notion of an almost hyperbolic contact (f, g, η, ξ)-structure. A
(2n+1)-dimensional differentiable manifold of class C∞ equipped with the structure
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(f, g, η, ξ) is known as an almost hyperbolic contact manifold. Further, it was studied
by number of authors ([2], [4], [22]). Let Tp(Ṽ) denote the tangent space of the
almost hyperbolic contact manifold Ṽ at point p. Then a vector field υ ∈ Tp(Ṽ),
υ ̸= 0, is said to be time-like (resp., null, space-like, and non-space-like) if it satisfies
gp(υ, υ) < 0 (resp.,= 0, > 0, and ≤ 0) ([8],[24]). If {e1, e2, ..., e2n, e2n+1 = ξ} be a
local orthonormal basis of Ṽ, then the Ricci tensor R̃ic and scalar curvature τ of an
almost hyperbolic contact metric manifold are defined as follows:

R̃ic(E ,F) =
2n+1∑
i=1

ϵig(R̃(ei, E)F)ei =
2n∑
i=1

ϵig(R̃(ei, E)F)ei − g(R̃(ξ, E)F)ξ (1.7)

τ =
2n+1∑
i=1

ϵiR̃ic(ei, ei) =
2n∑
i=1

ϵiR̃ic(ei, ei)− R̃ic(ξ, ξ), (1.8)

for all E ,F ∈ T Ṽ , where ϵi=g(ei, ei), ξ is a unit time-like vector field, R̃ denote the
curvature tensor of Ṽ and T Ṽ denotes the tangent bundle of Ṽ.

2. Hyperbolic Sasakian manifolds and their submanifolds

Let (Ṽn, g), (n=2m+1) be a differentiable manifold. Then the structure (ϕ, ξ, η)
satisfying

ϕ2 = I + η(ξ), η ◦ ϕ = 0, (2.1)
is said to be an almost hyperbolic contact structure [27], where I denotes the identity
transformation and ϕ, η and ξ are the tensor fields of type (1, 1), (0, 1) and (1, 0).
The manifold Ṽ admits the structure (ϕ, ξ, η) is called an almost hyperbolic contact
manifold. Also from (2.1), we have

ϕξ = 0, η(ξ) = −1 and rank(ϕ) = n− 1. (2.2)

If the semi-Riemannian metric g of Ṽ satisfies
g(E , ξ) = η(E), g(ϕE , ϕF) = −g(E ,F)− η(E)η(F), (2.3)

for all E ,F ∈ T Ṽ, then the structure (ϕ, ξ, η) is called an almost hyperbolic con-
tact metric structures and the Ṽn with the structure (ϕ, ξ, η) is known as an almost
hyperbolic contact metric manifold. An almost hyperbolic contact metric mani-
fold is said to be an almost hyperbolic Sasakian manifold if the 2-form defined as
Π(E ,F)=g(ϕE ,F) satisfies -2Π=dη, which is equivalent to

(∇̃Eϕ) = g(E ,F)ξ − η(F)E . Then ∇̃Eξ = −ϕE , (2.4)

for all E ,F ∈ T Ṽ and ∇̃ indicate the Levi-Civita connection of Ṽ.
In a hyperbolic Sasakian manifold we have:

R̃(E ,F)ξ = η(F)E − η(E)F , (2.5)

η(R̃(E ,F)G) = g(F ,G)η(E)− g(E ,G)η(F), (2.6)



282 S. K. Yadav , S. K. Hui and R. Prasad

R̃(ξ, E)F = g(E ,F)ξ − η(F)E , (2.7)

g(ϕE ,F) = −g(E , ϕF), (2.8)
for all E ,F ,G ∈ T Ṽ. Let Ñ be an m-dimensional submanifold of a hyperbolic
Sasakian manifold Ṽ (m < n) with induced metric g on Ñ. Also let ∇ and ∇⊥

be the induced connection on the tangent bundle T Ñ and the normal bundle T ⊥Ñ
of Ñ respectively. Then the Gauss and Weingarten formulae are given by

∇̃EF = ∇EF + ℏ(E ,F) (2.9)

and
∇̃EZ♭ = −AZ♭E +∇⊥

E Z♭, (2.10)
for all E ,F ∈ (T Ñ) and Z♭ ∈ (T ⊥Ñ), where ℏ and AZ♭ are second fundamental form
and the shape operator (corresponding to the normal vector field Z♭ ) respectively
for the immersion of Ñ into Ṽ. The second fundamental form ℏ and the shape
operator AZ♭ are related by

g(ℏ(E ,F),Z) = g(AZ♭E ,F), (2.11)

for all E ,F ∈ (T Ñ) and Z♭ ∈ (T ⊥Ñ). We note that ℏ(E ,F) is bilinear and since
∇fEF=f∇EF , for any smooth function f on a manifold, we have

ℏ(fE ,F) = fℏ(E ,F). (2.12)

A submanifold Ñ of a hyperbolic Sasakian manifold Ṽ is said to be totally umbilical
if

ℏ(E ,F) = g(E ,F)H, (2.13)
where E ,F ∈ TN and the mean curvature vector H on Ñ is given by H = 1

m

∑m
i=1 ℏ(ei, ei),

where {e1, e2, ....em} is a local orthonormal frame of vector fields on Ñ. Moreover if
ℏ(E ,F)=0 for all E ,F ∈ T Ñ, then Ñ is said to be totally geodesic and if H=0 then
Ñ is minimal in Ṽ. The covariant derivative of ℏ is

(∇Eℏ)(F ,G) = ∇⊥
E (ℏ(F ,G))− ℏ(∇EF ,G)− ℏ(F ,∇EG), (2.14)

for any vector field E ,F ,G tangent to Ñ. Then ∇ℏ is a normal bundle valued tensor
of type (0, 3) and is said to be third fundamental form of Ñ, ∇ is called the Vander–
Waerden–Bortolotti connection of Ṽ, i.e., ∇ is the connection in T Ñ ⊕ T ⊥Ñ built
with ∇ and ∇⊥. If ∇ℏ=0, then Ñ is said to have parallel second fundamental form
[29]. A submanifold Ñ is said to be semiparallel [22] (resp. 2-semi-parallel, see [3])
if

R̃(E ,F) · ℏ = 0, (resp. R̃(E ,F) · ∇̃ℏ = 0), for all E ,F ∈ Ṽ (2.15)
On a Riemannian manifold Ṽ, for a (0, k)-type tensor field T , (k > 1) and a (0, 2)-
type tensor field A, we denote the Q̂(A, T ) as a (0, k + 2)-type tensor field [28],
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defined as follows:
Q̂(A, T )(E1, E2, Ek; E ,F) = −T ((E ∧A F)(E1, E2, Ek)

− T (E1, E ∧A F)E2, Ek)
− ......− T (E1, E2, ...., Ek−1(E ∧A F)Ek)

(2.17)
where (E ∧A F)G=A(F ,G)E-A(E ,G)F .
A submanifold Ñ is said to be pseudo-parallel [3] if

R̃(E ,F) · ℏ = fQ̂(g, ℏ), (2.18)

holds for any vector fields E and F tangent to Ṽ and a smooth function f . Similarly,
a submanifold Ñ is said to be 2-pseudo-parallel if R̃(E ,F) · ∇̃ℏ=fQ̂(R̃ic, ∇̃ℏ) and it
is Ricci generalized pseudo-parallel [23] if R̃(E ,F) · ℏ=fQ̂(R̃ic, ℏ) for any E ,F ∈ Ṽ.

3. Invariant submanifold of a hyperbolic Sasakian manifold

A submanifold Ñ of an n-dimensional hyperbolic Sasakian manifold Ṽ is said to
be invariant if the structure vector field ξ is tangent to Ñ at every point of Ñ and
ϕE is tangent to Ñ for every vector field E tangent to Ñ at every point of Ñ. i.e.,
ϕ(T Ñ) ⊂ T Ñ at every point of Ñ.( see [7], [17], [26], [32], [18], [19], [20]).
In an invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ [7], we have

∇̃Eξ = −ϕE , (3.1)
ℏ(E , ξ) = 0, ℏ(E , ϕF) = ℏ(ϕE ,F) = ϕℏ(E ,F), (3.2)
(∇̃Eϕ)(F) = (∇Eϕ)(F) + ℏ(E , ϕF)− ϕℏ(E ,F), (3.3)

R̃(E ,F)ξ = η(F)E − η(E)F , (3.4)
R̃(ξ, E)F = g(E ,F)ξ − η(F)E , (3.5)

Q̃ξ = (n− 1)ξ, R̃ic(E , ξ) = (n− 1)η(E). (3.6)
In light of the aforementioned outcome, we aim to study the invariant submani-
fold of a hyperbolic Sasakian manifolds satisfying some geometric conditions such
as Q̂(ℏ, R̃)=0, Q̂(R̃ic, ℏ)=0, Q̂(R̃ic,∇ℏ)=0, Q̂(R̃ic, R̃ · ℏ)=0, Q̂(g,Z · ℏ)=0 and
Q̂(R̃ic,Z · ℏ)=0. Sections 5 and 6 concern with the study of conformal η-Ricci-
Yamabe solitons on invariant submanifolds of hyperbolic Sasakian manifolds and
obtain some interesting results. Next we have investigate invariant submanifold
whose second fundamental form ℏ satisfies [29]

(∇Eℏ)(F ,G) = ϵ1(E)ℏ(F ,G) + ϵ2(F)ℏ(E ,G) + ϵ3(G)ℏ(E ,F), (3.7)
where ϵ1, ϵ2 and ϵ3 are non-zero 1-forms defined by ϵ1(E)=g(E , θ1), ϵ2(E)=g(E , θ2)
and ϵ2(E)=g(E , θ3) in section 7. Finally, in section 8 we construct a non-trivial
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example of an invariant submanifold of hyperbolic Sasakian manifold which verify
the result.

Theorem 3.1. An invariant submanifold of a hyperbolic Sasakian manifold satisfies
Q̂(ℏ, R̃)=0 if and only if it is totally geodesic.

Proof. The condition Q̂(ℏ, R̃)(E ,F ,G;U ,V)=0 on Ñ with the help of (??) implies
R̃((U ∧ℏ V)E ,F)G − R̃(E , (U ∧ℏ V)F)G − R̃(E ,F)(U ∧ℏ V)G = 0, (3.8)

where (U ∧ℏ V) is the endomorphism and it is defined by
(U ∧ℏ V)W = ℏ(V,W)U − ℏ(U ,W)V. (3.9)

With the help of (3.9) and (3.8), we get
− ℏ(V, E)R̃(U ,F)G + ℏ(U , E)R̃(V,F)G
− ℏ(V,F)R̃(E ,F)G + ℏ(U ,F)R̃(E ,V)G (3.10)
− ℏ(V,G)R̃(E ,F)G + ℏ(U ,G)R̃(E ,F)G = 0.

For fix V=G=ξ in (3.10), using (3.2) and (3.5), we have
ℏ(U , E)[η(F)ξ + F ] + ℏ(U ,F)[η(E)ξ − E ] = 0. (3.11)

After contracting (3.11) over F , we yields ℏ(U , E)=0. Thus the manifold is totally
geodesic. Conversely, if ℏ(E ,F)=0, for any vector fields E and F on Ñ, then it
follows from (3.10) that Q̂(ℏ, R̃)=0. This proves the theorem. □
Theorem 3.2. An invariant submanifold of a hyperbolic Sasakian manifold satisfies
Q̂(R̃ic, ℏ)=0 if and only if it is totally geodesic.

Proof. Let the invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ satisfies
Q̂(Ric, ℏ)=0. Then we have

0 = Q̂(R̃ic, ℏ)(E ,F ;U ,V)
= −ℏ((U ∧

R̃ic
V)E ,F)− ℏ(E , (U ∧

R̃ic
V)F), (3.12)

where (U ∧
R̃ic

V)W is defined as

(U ∧
R̃ic

V)W = R̃ic(V,W)U − R̃ic(U ,W)V. (3.13)
By virtue of (3.13), we get from (3.12), that

− R̃ic(V, E)ℏ(U ,F) + R̃ic(U , E)ℏ(V,F)

− R̃ic(V,F)ℏ(E ,U) + R̃ic(U ,F)ℏ(E ,V) = 0. (3.14)
After taking U=F=ξ in (3.14), using (3.2) and (3.6) we yields

(n− 1)ℏ(E ,V) = 0, (3.15)
which implies that ℏ(E ,V)=0, for any vector fields E and E on Ṽ. So, Ñ is totally
geodesic. Conversely, statement is obvious. This proves the theorem. □
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Theorem 3.3. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q̂(R̃ic, ∇̃ℏ)=0.

Proof. We assume that Q̂(R̃ic, ∇̃ℏ)=0, on Ñ implies that

Q̂(R̃ic, R̃(E ,F) · ℏ)(G,U ,V,W) = 0. (3.16)
Using (??), equation (3.16) can be written as

− (∇Eℏ)(R̃ic(W,G)V,U) + (∇Eℏ)(R̃ic(V,G)W,U)
− (∇Eℏ)(G, R̃ic(W,U)V) + (∇Eℏ)(G, R̃ic(V,U)W) = 0. (3.17)

For fix, G=U=V=ξ in (3.17), using (3.1) we get
2mℏ(U , ϕE) = 0, (3.18)

which implies that ℏ(U , ϕE)=0. That is, Ñ is totally geodesic. So, the proof is
finished. □

Theorem 3.4. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q(R̃ic, R̃ · ℏ)=0.

Proof. It follows from the condition Q̂(Ric, R̃ · ℏ)=0 on Ñ that

Q̂(R̃ic, R̃(E ,F) · ℏ)(G,U ,V,W) = 0, (3.19)

for any vector fields E ,F ,G,U ,V,W on Ñ. In view of (??), above equation can be
written as

− (R̃(E ,F)ℏ(R̃ic(W,G)V,U) + (R̃(E ,F)ℏ(R̃ic(V,G)W,U)
− (R̃(E ,F)ℏ(G, R̃ic(W, )U),V) + (R̃(E ,F)ℏ(G, R̃ic(V, )U),W). (3.20)

After taking F=G=U=W=ξ in (3.20), we have

R̃ic(ξ, ξ)ℏ(R̃(E , ξ)ξ,V) = 0. (3.21)
Using (3.4) and (3.6), we get from (3.21) that 2m ℏ(E ,V)=0, which implies that
ℏ(E ,V)=0. This complete the proof. □

4. Invariant submanifolds admitting Q̂(g,Z · ℏ)=0 and Q̂(R̃ic,Z · ℏ)=0

The notion of generalized quasi-conformal curvature (briefly,GQC) tensor [30] and
is defined on an (2n+ 1)-dimensional manifold Ṽ

Z(E ,F)G =
2n− 1

2n+ 1
[(1 + 2na− b)− {1 + 2n(a+ b)}c] C(E ,F)G

+ [1− b+ 2na]D(E ,F)G + 2n(b− a)P(E ,F)G

+
2n− 1

2n+ 1
(c− 1)[1 + 2n(a+ b)]C⊥(E ,F)G, (4.1)
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for all vector fields E , F , G on Ṽ and a, b, c ∈ R. The GQC curvature tensor is
the generalization of Riemann curvature tensor R for a=b=c=0; Conformal cur-
vature tensor C[11] for a=b=− 1

2n−1 , c=1; Conharmonic curvature tensor C⊥[21]
for a=b=− 1

2n−1 , c=0; Concircular curvature tensor D[31] for a=b=0, c=1; Projec-
tive curvature tensor P[31] for a=- 1

2n , b=0, c=0 and m-projective curvature tensor
M[25], for a=b=− 1

4n , c=0.
After simplification (4.1) on Ṽ takes the form

Z(E ,F)G = R̃(E ,F)G + a[R̃ic(F ,G)E − R̃ic(E ,G)F ]

+ b[g(F ,G)Q̃E − g(E ,G)Q̃F ]

− cτ

2n+ 1
(
1

2n
+ a+ b)[g(F ,G)E − g(E ,G)F ], (4.2)

where τ being the scalar curvature of the manifold. So, first we lead to the following:
Theorem 4.1. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q̂(g,Z · ℏ)=0, provided τ ̸= 2m(2m+1)

c .

Proof. We suppose that Q̂(g,Z · ℏ)=0 on Ñ implies that
Q̂(g,Z(E ,F) · ℏ)(G,U ,V,W) = 0,

for any vector fields E ,F ,G,U ,V,W on Ṽ. With the help of (??), above equation
can be written as

−g(W,G)(Z(E ,F) · ℏ)(V,U) + g(V,U)(Z(E ,F) · ℏ)(W,U)
− g(W,U)(Z(E ,F) · ℏ)(G,V)
+ g(V,U)(Z(E ,F) · ℏ)(G,W) = 0. (4.3)

On substituting F=U=G=V=ξ in (4.3), we have
R̃ic(ξ, ξ)ℏ(Z(E , ξ)ξ,W) = 0, (4.4)

which implies with the help of (4.2) that[
cτ

2m+ 1
(
1

2m
+ a+ b)− 2m(a+ b)− 1

]
ℏ(E ,W) = 0.

We obtain the statement of Theorem 4.1. □
As per above consequence, we can state the following corollaries

Corollary 4.2. An invariant submanifold of a hyperbolic Sasakian manifold is to-
tally geodesic for each of (i) Q̂(g, C ·ℏ)=0,(ii)Q̂(g,D·ℏ)=0, provided τ ̸= 2m(2m+1).

Corollary 4.3. Let Ñ be an invariant submanifold of a hyperbolic Sasakian manifold
Ṽ. Then for each of (i) Q̂(g, C⊥ · ℏ)=0, (ii) Q̂(g,P · ℏ)=0 and (iii)Q̂(g,M· ℏ)=0, Ñ
is not totally geodesic.
Now we prove our next result.
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Theorem 4.4. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q̂(R̃ic,Z · ℏ)=0, provided τ ̸= 2m(2m+1)

c .

Proof. Assuming that Q̂(R̃ic,Z · ℏ)=0, we have

Q̂(R̃ic,Z(E ,F) · ℏ)(G,U ,V,W) = 0,

for any vector fields E ,F ,G,U ,V,W on V. By virtue of (??), above equation can be
written as

−R̃ic(W,G)(Z(E ,F) · ℏ)(V,U) + R̃ic(V,U)(Z(E ,F) · ℏ)(W,U)
− R̃ic(W,U)(Z(E ,F) · ℏ)(G,V)
+ R̃ic(V,U)(Z(E ,F) · ℏ)(G,W) = 0. (4.5)

After replacing F=U=G=V=ξ in (4.5), we obtain

R̃ic(ξ, ξ)ℏ(Z(E , ξ)ξ,W) = 0, (4.6)
which implies with the help of (4.2) that[

cτ

2m+ 1
(
1

2m
+ a+ b)− 2m(a+ b)− 1

]
ℏ(E ,W) = 0.

This finished the proof. □

On behalf of theorem 4.4, we state the following corollaries

Corollary 4.5. An invariant submanifold of a hyperbolic Sasakian manifold is to-
tally geodesic for each of (i) Q̂(R̃ic, C · ℏ)=0,(ii)Q̂(R̃ic,D · ℏ)=0, provided τ ̸=
2m(2m+ 1).

Corollary 4.6. Let Ñ be an invariant submanifold of a hyperbolic Sasakian manifold
Ṽ. Then for each of (i) Q̂(R̃ic, C⊥ · ℏ)=0, (ii) Q̂(R̃ic,P · ℏ)=0 and (iii) Q̂(R̃ic,M·
ℏ)=0, Ñ is not totally geodesic.

5. Conformal η-Ricci-Yamabe solitons on invariant submanifold

Let (g, ξ, κ, l, µ, ν) be the conformal η-Ricci-Yamabe soliton of type (κ, l) on invariant
submanifold of a hyperbolic Sasakian manifold. Then from (1.6), we have

(Lξg)(E ,F) + 2κR̃ic(E ,F) + [2µ− lτ − 1

n
(p̃n+2)]g(E ,F) + 2νη(E)η(F) = 0. (5.1)

Since Ñ is invariant in Ṽ, then −ϕE , ξ ∈ T Ñ, then using (3.1) and (3.2), we get

(Lξg)(E ,F) = g(∇̃Eξ,F) + g(E , ∇̃Fξ) = 0. (5.2)
Adopting (5.1) and (5.2) we yields

R̃ic(E ,F) = [
1

2nκ
(np̃+ 2) +

lτ

2κ
− µ

κ
]g(E ,F)− ν

κ
η(E)η(F), (5.3)
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which implies that Ñ is η-Einstein. Also from (2.13) and (3.2), η(E)H=0, i.e., H=0

and therefore Ñ is minimal in Ṽ. So, we turn up the result:

Theorem 5.1. If (g, ξ, κ, l, µ, ν) be the conformal η-Ricci-Yamabe soliton of type
(κ, l) on invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ. Then we
have
(i) Ñ is η-Einstein,
(ii) Ñ is minimal and
(iii) ξ is a killing vector field in Ṽ.

We obtain the following results for different value of (κ=1, l=0, κ=0, l=1, and κ=1,
l=1 (cf. [6],[15],[16]):

Corollary 5.2. If (g, ξ, l, κ, µ, ν) be as the conformal η-Ricci soliton or conformal
η-Yamabe soliton or conformal η-Einstein soliton on invariant submanifold Ñ of a
hyperbolic Sasakian manifold Ṽ. Then we obtain the following
(i) Ñ is η-Einstein,
(ii) Ñ is minimal and
(iii) ξ is a killing vector field in Ṽ.

Also from (5.3) we turn up

κ R̃ic(ξ, ξ) = µ− 1

2n
(np̃+ 2)− lτ

2
− ν. (5.4)

Equating (5.4) and (3.6), we get

µ− ν =
1

2n
(np̃+ 2) +

lτ

2
− κ(n− 1). (5.5)

In particular, if we put ν=0, then conformal η-Ricci-Yamabe soliton of type (κ, l)
becomes conformal Ricci-Yamabe soliton of type (κ, l) with µ= 1

2n(np̃+2)+ lτ
2 -κ(n−

1). So, we state the result:

Theorem 5.3. Let (g, ξ, κ, l, µ, ν) be the conformal η-Ricci-Yamabe solitons of type
(κ, l) on invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ. Then
µ= 1

2n(np̃ + 2)+ lτ
2 +ν-κ(n − 1). Also, the conformal Ricci-Yamabe solitons on Ñ

is steady, expanding or shrinking according as τ=1
l [2κ(n − 1) − (p̃ + 2

n)], τ >
1
l [2κ(n− 1)− (p̃+ 2

n)], or τ < 1
l [2κ(n− 1)− (p̃+ 2

n)], respectively.

Also, in view of Theorem 5.3, one can state the followings corollaries.

Corollary 5.4. A conformal Ricci soliton (g, ξ, µ, 1, 0) on an invariant submanifold
Ñ of a hyperbolic Sasakian manifold Ṽ is steady, expanding or shrinking according
as p̃=[2(n+ 1)− 2

n ], p̃ > [2(n+ 1)− 2
n ] or, p̃ < [2(n+ 1)− 2

n ],respectively.

Corollary 5.5. A Ricci soliton (g, ξ, µ, 1, 0) on an invariant submanifold Ñ of a
hyperbolic Sasakian manifold Ṽ is always shrinking.
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Corollary 5.6. A conformal Yamabe soliton (g, ξ, µ, 0, 1) on an invariant subman-
ifold Ñ of a hyperbolic Sasakian manifold Ṽ is steady, expanding or shrinking ac-
cording as τ=-(p̃+ 2

n), τ > −(p̃+ 2
n) or, τ < −(p̃+ 2

n),respectively.

Corollary 5.7. A Yamabe soliton (g, ξ, µ, 0, 1) on an invariant submanifold Ñ of
a hyperbolic Sasakian manifold Ṽ is steady, expanding or shrinking depending upon
the sign of scalar curvature τ .

Corollary 5.8. A conformal Einstein soliton (g, ξ, µ, 1,−1) on an invariant sub-
manifold Ñ of a hyperbolic Sasakian manifold Ṽ is steady, expanding or shrinking
according as τ=[2(n − 1) + (p̃ + 2

n)], τ > [2(n − 1) + (p̃ + 2
n)] or, τ < [2(n − 1) +

(p̃+ 2
n)],respectively.

Corollary 5.9. An Einstein soliton (g, ξ, µ, 1,−1) on an invariant submanifold Ñ
of a hyperbolic Sasakian manifold Ṽ is steady, expanding or shrinking according as
τ=−2(n− 1), τ > −2(n− 1) or, τ < −2(n− 1),respectively.

6. Conformal η-Ricci-Yamabe soliton with concircular vector field
on invariant submanifolds

A vector field π on a (semi-) Riemannian manifold N is said to be a concircular
vector field (or, geodesic fields) [13] if it satisfies

∇Eπ = ψE (6.1)

for any E ∈ TN, where ∇ denotes the Levi-Civita connection of the metric g and ψ
is a non-trivial smooth function on N. Recently, Chen [16] studied the properties of
Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular
vector field. Particularly, if we choose ψ=1 in equation (6.1), then the concircular
vector field π is called concurrent vector field. Then from Lemma 4.1[chaubey], we
can write

π = πt + π⊥, (6.2)
where π ∈ TN, πt ∈ D and π ∈ D⊥. Now, for a concircular vector field π on Ṽ, from
(6.1) we have

ψE = ∇̃Eπ
t + ∇̃Eπ

⊥, (6.3)
for any E ∈ D. Using (2.9) and (2.10) and comparing the tangential and normal
components , we yields

ℏ(E , πt) = −∇⊥
E π

⊥, ∇Eπ
t = ψE − Aπ⊥E . (6.4)

Now, we can state the following

Theorem 6.1. Let Ñ be an invariant submanifold of Ṽ admitting conformal η-Ricci-
Yamabe soliton with concircular vector field π. Then the Ricci tensor R̃icD on the
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invariant distribution D is given by

R̃icD(E ,F) = −1

κ
{(ψ + µ− lτ

2
− 1

2n
(np̃+ 2))g(E ,F)

− g(ℏ(E ,F), π⊥) + νη(E)η(F)} (6.5)

for any vector field E,F ∈ D.

Proof. Adopting (6.4) together with the definition of Lie-derivative, we have

(Lπtg)(E ,F) = 2ψg(E ,F)− 2g(ℏ(E ,F), π⊥). (6.6)

Let the invariant submanifold Ñ admits conformal η-Ricci-Yamabe soliton, so from
(1.6) we yields

(Lπtg)(E ,F)+2κR̃icD(E ,F)+[2µ− lτ− 1

n
(p̃n+2)]g(E ,F)+2νη(E)η(F) = 0. (6.7)

Therefore, using (6.6) and (6.7), we can easily get the required result (6.5). □

Particularly, if we choose π is a concurrent vector field and (g, ξ, κ, l, µ, ν) is confor-
mal η-Ricci-Yamabe soliton in Ñ of Ṽ. Then by same fashion as the above conse-
quence, we can state:

Corollary 6.2. If an invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ
admits conformal η-Ricci-Yamabe soliton with concurrent vector field π. Then the
invariant distribution D of Ñ is an η-Einstein, provided the invariant distribution
D of Ñ is D-geodesic.

Corollary 6.3. Let Ñ be an invariant submanifold of Ṽ admitting conformal η-
Ricci-Yamabe soliton with concurrent vector field π. Then the Ricci tensor R̃icD on
the invariant distribution D is given by

R̃icD(E ,F) = −1

κ
{(1 + µ− lτ

2
− 1

2n
(np̃+ 2))g(E ,F)

− g(ℏ(E ,F), π⊥) + νη(E)η(Y)} (6.8)

for any vector field E,F ∈ D.

Corollary 6.4. Assume that an invariant submanifold Ñ of Ṽ admits conformal
η-Ricci-Yamabe soliton with a concurrent vector field π. If the invariant distribution
D of Ñ is D-geodesic, then the invariant distribution D is η-Einstein.

Finally, with the help of Theorem 6.1, we obtain the following corollaries for different
value of (κ=1, l=0; κ=0, l=1 and κ=1, l=1):

Corollary 6.5. If an invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ
admits conformal η-Ricci-Yamabe soliton with a concircular vector field π, then the
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Ricci tensor R̃icD on the invariant distribution D is given by

R̃icD(E ,F) = −
{
(ψ + µ− 1

2n
(np̃+ 2))g(E ,F)− g(ℏ(E ,F), π⊥) + νη(E)η(F)

}
,

(6.9)
for any vector field E,F ∈ D.

Corollary 6.6. If an invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ
admits conformal η-Yamabe soliton with a concircular vector field π, then the scalar
curvature on the invariant distribution D is given by

τ = 2(ψ + µ− ν)− (p̃+
2

n
). (6.10)

Corollary 6.7. If an invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ
admits conformal η-Einstein soliton with a concircular vector field π, then the Ricci
tensor R̃icD on the invariant distribution D is given by

R̃icD(E ,F) = −
{
(ψ + µ+

τ

2
− 1

2n
(np̃+ 2))g(E ,F)− g(ℏ(E ,F), π⊥) + νη(E)η(F)

}
(6.11)

for any vector field E,F ∈ D.

7. Invariant submanifold whose second fundamental form ℏ is weakly
symmetric type

In this section, we assume that invariant submanifold Ṽ has parallel second funda-
mental form. Then from (2.14), we have

(∇Eℏ)(F ,G) = ∇⊥
E (ℏ(F ,G))− ℏ(∇EF ,G)− ℏ(F ,∇EG), (7.1)

For fix, G=ξ in (7.1), using (3.1) and (3.2), we get

(∇Eℏ)(F , ξ) = ϕℏ(E ,F). (7.2)

In view of (3.7) and (3.2) one can easily bring out

(∇Eℏ)(F , ξ) = ϵ3(ξ)ℏ(E ,F). (7.3)

Equating (7.2) and (7.3), we yields

[ϕ− ϵ3(ξ)]ℏ(E ,F) = 0. (7.4)

Thus, we turn up to the following:

Theorem 7.1. An invariant submanifold Ñ of a hyperbolic Sasakian manifold Ṽ
is totally geodesic if second fundamental form ℏ is of the types (i) symmetric, (ii)
recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly
pseudo symmetric, provided ϕ ̸= ϵ3(ξ).



292 S. K. Yadav , S. K. Hui and R. Prasad

8. Example

Let ℜn be an n-dimensional space of real number and we define Ṽ5={(x, y, z, u, v) ∈
ℜ5}. Let {e1, e2, e3, e4, e5} be a set of linearly independent vector fields of Ṽ5 given
by

e1 = −αy ∂
∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
, e4 = −αv ∂

∂z
+

∂

∂u
, e5 =

∂

∂v
.

We define the metric g̃ of Ṽ5 by the following relation
g̃(e2, e2) = g̃(e3, e3) = g̃(e5, e5) = −1, g̃(e1, e1) = g̃(e4, e4) = 1.

Let η be the 1-form defined by η(E)=g(E , e3), for any E ∈ Ṽ5 and the (1, 1)-tensor
field ϕ of Ṽ5 as

ϕe1 = e2, ϕe2 = e1, ϕe3 = 0, ϕe4 = e5, ϕe5 = e4.

By the use of linearity properties of ϕ and g, we have
ϕ2ei = ei + η(ei)ξ, η(e3) = −1,

hold for i=1, 2, 3, 4, 5 and ξ=e3. Also, for ξ=e3, Ṽ5 satisfies g(ei, e3)=η(ei), g(ϕei, ej)=-
g(ei, ϕej) and g(ϕei, ϕej)=g(ϕei, ej)+η(ei)η(ej), where i, j=1, 2, 3, 4, 5. Now, we can
easily compute

[ei, ej ] =


αe3, if i = 1, j = 2.

αe3, if i = 4, j = 5.

0, otherwise.
Using Koszul’s formula, we obtain

∇̃e1e1 = 0, ∇̃e1e2 = −α
2
e3, ∇̃e1e3 =

α

2
e2, ∇̃e1e4 = 0, ∇̃e1e5 = 0,

∇̃e2e1 =
α

2
e3, ∇̃e2e2 = 0, ∇̃e2e3 =

α

2
e1 ∇̃e2e4 = 0, ∇̃e2e5 = 0,

∇̃e3e1 =
α

2
e2, ∇̃e3e2 =

α

2
e1, ∇̃e3e3 = 0, ∇̃e3e4 =

α

2
e5, ∇̃e3e5 =

α

2
e4,

∇̃e4e1 = 0, ∇̃e4e2 = 0, ∇̃e4e3 =
α

2
e5 ∇̃e4e4 = o, ∇̃e4e5 =

α

2
e3,

∇̃e5e1 = 0, ∇̃e5e2 = 0, ∇̃e5e3 =
α

2
e4 ∇̃e5e4 =

α

2
e3, ∇̃e5e5 = 0.

Thus for e3=ξ and α=-2, it can be easily verifies that ∇Eξ=-ϕE for all E ∈ T Ṽ5.
So, the manifold Ṽ5 equipped with the structure (ϕ, ξ, η, g) is an almost hyperbolic
Sasakian manifold of dimension 5.
Let f̃ be an isometric immersion from N to Ṽ defined by f̃(x, y, z)=(x, y, z, 0, 0).
Then we define N={(x, y, z) ∈ ℜ3 : z ̸= 0}, where (x, y, z) are the standard co-
ordinates in ℜ3. Let {e1, e2, e3} be linearly independent global frame on N given
by

e1 = −αy ∂
∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
.
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Thus we have
g̃(e1, e1) = 1, g̃(e2, e2) = g̃(e3, e3) = −1.

Also, the (1, 1)-tensor field ϕ of Ñ3 as follows

ϕe1 = e2, ϕe2 = e1, ϕe3 = 0.

Adopting the linearity properties of ϕ and g, we have

ϕ2ei = ei + η(ei)ξ, η(ξ) = −1,

holds for i=1, 2, 3 and ξ=e3. Again, for ξ=e3, Ñ3 satisfies

g(ϕei, ϕej) = −g(ei, ej)− η(ei)η(ej),

where i, j=1, 2, 3. Next, one can easily get

[e1, e2] = αe3, [e1, e3] = 0, [e2, e3] = 0.

By the use of Koszul’s formula, we have

∇̃e1e1 = 0, ∇̃e1e2 = −α
2
e3, ∇̃e1e3 =

α

2
e2, ∇̃e2e1 =

α

2
e3, ∇̃e2e2 = 0,

∇̃e2e3 =
α

2
e1, ∇̃e3e1 =

α

2
e2, ∇̃e3e2 =

α

2
e1, ∇̃e3e3 = 0.

It is obvious that for e3=ξ and α=-2, it satisfies ∇Eξ=-ϕE for all E ∈ T Ñ3. Thus,
the manifold Ñ3 equipped with the structure (ϕ, ξ, η, g) is a hyperbolic Sasakian
manifold of dimension 3. We define the tangent space T Ñ of Ñ3 takes the form

T Ṽ = D ⊕D⊥⊕ < ξ >,

where D=< e1 > and D⊥=< e2 >. Then we notice that ϕe1=-e2 ∈ D⊥, for e1 ∈ D
and ϕe2=-e1 ∈ D, for e2 ∈ D⊥. Hence, we can say that Ñ3 under consideration is an
invariant submanifold of Ṽ5. Also, from (2.9) we have ℏ(ei, ej) = ∇̃eiej−∇eiej . Thus
from the values of ∇̃eiej and ∇eiej , we notice that ℏ(ei, ej)=0, ∀ i, j = 1, 2, 3. This
leads to the submanifold is totally geodesic. So, Theorems 3.1, 3.2, 3.3, 3.4, 4.1
and 4.4 are verified.
The non-vanishing components of the curvature tensor R using the preceding rela-
tions

R̃(e1, e2)e1 = −α
2

4
e2, R̃(e1, e3)e1 = −α

2

4
e3, R̃(e1, e2)e2 = −α

2

4
e1,

R̃(e2, e3)e2 =
α2

4
e3, R̃(e1, e3)e3 = −α

2

4
e1, R̃(e2, e3)e3 = −α

2

4
e2

Also the Ricci tensor S and scalar curvature τ as:

R̃ic(e1, e1) =
α2

2
, R̃ic(e2, e2) = R̃ic(e3, e3) = −α

2

2
and τ = −α

2

2
. (8.1)
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Since, Ñ3 in invariant on Ṽ5. Then, we set E=F=e3 into the identity (5.2), get
(Lξg)(e3, e3)=0. So from (5.1) and (8.1) which provides

µ− ν =
1

2
(p̃+

2

3
)− lα2

4
− κα2

2
. (8.2)

Hence the above equation proves that, µ and ν satisfies our result (5.5) for n=3
and α=-2 and g gives a conformal η-Ricci–Yamabe soliton of type (κ, l) on the 3-
dimensional hyperbolic Sasakian submanifold Ñ3 of the 5-dimensional hyperbolic
Sasakian manifold Ṽ3. Thus, we can conclude that the Theorem 5.3 and Corol-
lary5.5,Corollary5.6, Corollary5.7, Corollary5.8, Corollary5.9 hold on Ñ3.
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