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ifold of a hyperbolic Sasakian manifold to be totally geodesic with certain geo-
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1. INTRODUCTION
In a Riemannian manifold (V", ), the concept of conformal Ricci flow is defined as
a generalisation of the classical Ricci flow [12]
dg
i
where p define a time dependent non-dynamical scalar field (also called the conformal

~2(Ric+ %) ~pg, 7(9) = -1, (L)

pressure), g is the Riemannian metric, and 7 and Ric denote the scalar curvature
and the Ricci tensor of V", respectively.
A conformal Ricci soliton on (V" g) is defined as follows [b]:
S 1
Leg + 2Ric = [ﬁ(pn +2) — 2ulg, (1.2)
where £¢, £ and p indicate the Lie-derivative operator, a smooth vector field, and

a constant, respectively. A new class of geometric flow called Ricci-Yamabe flow of
type (k, 1), which is a scalar combination of Ricci and Yamabe flow is given by [14]:

0 —
ag(t) = 2k Ric(g(t)) — Ir(t)g(t), 9(0) = go, (1.3)
for some scalars x and [.

Definition 1.1. g, the Riemannian metric is named the Ricci-Yamabe soliton of
type (k,1) (briefly, (RYS))[9] if

Leg + 26Ric + (2p — Ir)g = 0, (1.4)
where [, k, € R.

Definition 1.2. g, the Riemannian metric is said to be the conformal Ricci-Yamabe
soliton (briefly, (CRYS))[B3] if

— 1
Leg +26Ric+ 20— T — —(pn+2)lg = 0, (1.5)
A Riemannian manifold (V",g) is said to be conformal 7-Ricci-Yamabe soliton
(briefly, (CERYS)) if

— 1
Leg+ 2kRic+ 2p — I — E(ﬁn—l—2)]g+2w7®17 =0, (1.6)

where [, k, i, v € R and and 7 is a 1-form on vr.

A CRYS (or gradient CRYS) is said to be shrinking, steady or expanding if 4 < 0, =
0 or > 0, respectively. A CERYS (or gradient CERYS) reduces to (i) conformal
n-Ricci soliton if k=1, =0, (ii) conformal n-Yamabe soliton if k=0, =1, (iii)
conformal n-Einstein soliton if k=1, [=-1.

In [27], introduced the notion of an almost hyperbolic contact (f, g, n, {)-structure. A
(2n+ 1)-dimensional differentiable manifold of class C*° equipped with the structure
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(f,g,n,&) is known as an almost hyperbolic contact manifold. Further, it was studied
by number of authors ([2], [4], [22]). Let 7,(V) denote the tangent space of the

almost hyperbolic contact manifold V at point p. Then a vector field v € 7;,({/'),
v # 0, is said to be time-like (resp., null, space-like, and non-space-like) if it satisfies
gp(v,v) <0 (resp.,= 0,> 0, and < 0) ([8],[24]). If {e1,eq,..., e, €241 = £} be a
local orthonormal basis of YN/, then the Ricci tensor Ric and scalar curvature 7 of an
almost hyperbolic contact metric manifold are defined as follows:

2n+1 2n

Ric(&,F) =Y eig(R(ei, €)Flei =Y eig(R(ei, €)F)es — g(R(E,E)F)E (1.7
=1 =1
2n+1 o 2n - -
7= €Ric(ei,e;) = Y eiRic(e;,e;) — Ric(€, §), (1.8)
i=1 i=1

forall £, F € TV , where ei:g(ei, ei), € is a unit time-like vector field, R denote the
curvature tensor of V and 7V denotes the tangent bundle of V.

2. HYPERBOLIC SASAKIAN MANIFOLDS AND THEIR SUBMANIFOLDS

Let (V" g), (n=2m+1) be a differentiable manifold. Then the structure (¢, &, n)
satisfying

¢* =T +n(&), no¢=0, (2.1)
is said to be an almost hyperbolic contact structure [27], where Z denotes the identity
transformation and ¢,  and £ are the tensor fields of type (1,1), (0,1) and (1,0).
The manifold V admits the structure (¢,&,m) is called an almost hyperbolic contact
manifold. Also from (R.1]), we have

=0, n(¢)=-1 and rank(¢)=n—1. (2.2)
If the semi-Riemannian metric g of V satisfies

for all £, F € T\~7, then the structure (¢,&,n) is called an almost hyperbolic con-
tact metric structures and the V™ with the structure (¢, £, 7) is known as an almost
hyperbolic contact metric manifold. An almost hyperbolic contact metric mani-
fold is said to be an almost hyperbolic Sasakian manifold if the 2-form defined as
II(E, F)=g(¢€&, F) satisfies -2II=dn, which is equivalent to

(Ved) = g(€, F)E —n(F)E. Then Ve& = —¢€, (2.4)

for all &, F € TV and V indicate the Levi-Civita connection of V.
In a hyperbolic Sasakian manifold we have:

R(E,F)E = n(F)E —n(E)F, (2.5)
N(R(E,F)G) = g(F,G)m(E) — g(£.G)n(F), (2.6)
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R(EEF = g(&, F)E —n(F)E, (2.7)

9(9E, F) = —g(&,0F), (2.8)
for all &, F,G € T7V. Let N be an m-dimensional submanifold of a hyperbolic
Sasakian manifold V (m < n) with induced metric g on N. Also let V and V=
be the induced connection on the tangent bundle 7N and the normal bundle 71N
of N respectively. Then the Gauss and Weingarten formulae are given by

VeF = VeF +h(E,F) (2.9)

and
VeZ' = —AzE +VE2, (2.10)
for all £, F € (TN) and Z° € (T1N), where / and A, are second fundamental form

and the shape operator (corresponding to the normal vector field yatd ) respectively

for the immersion of N into V. The second fundamental form A and the shape
operator A, are related by

g(ME,F),2) =g(AnE,F), (2.11)

for all £, F € (TN) and 2° € (T1N). We note that h(E, F) is bilincar and since
Ve F=fVeF, for any smooth function f on a manifold, we have

mfE,F)= fR(E,F). (2.12)
A submanifold N of a hyperbolic Sasakian manifold V is said to be totally umbilical
if

hE,F)=g(& F)H, (2.13)
where £, F € TN and the mean curvature vector 7 on N is given by H = LS R(ei e5),

where {e1, ea,....ep, } is a local orthonormal frame of vector fields on N. Moreover if
nE,F)=0 for all £, F € TN, then N is said to be totally geodesic and if H=0 then
N is minimal in V. The covariant derivative of & is

(Veh)(F,G) = V& (h(F,G)) — M(VeF,G) — h(F,VeG), (2.14)

for any vector field £, F, G tangent to N. Then VA is a normal bundle valued tensor
of type (0,3) and is said to be third ~fund:;ufnental form of N, V is call(id the Vimder—
Waerden-Bortolotti connection of V, i.e., V is the connection in TN & TN built
with V and V. If VHh=0, then N is said to have parallel second fundamental form
[29]. A submanifold N is said to be semiparallel [22] (resp. 2-semi-parallel, see [B])
if

R(E,F)-h=0, (resp. R(E,F)-Vh=0), forall &, F eV (2.15)
On a Riemannian manifold V, for a (0, k)-type tensor field 7, (k > 1) and a (0, 2)-
type tensor field A, we denote the Q(A,T) as a (0,k + 2)-type tensor field [2§],
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defined as follows:
O(A,T)(E1,E2,E E,F) = ~T((E AaF)(E1,E2.E)
T(gla 8 /\.A ]:)527 5’6)
— e —T(E1,E2 ooy Ep—1(E Aa F)Ek)

(2.17)
where (€ Aa F)G=A(F,G)E-A(E,G)F
A submanifold N is said to be pseudo-parallel [3] if
R(E.F) - h=fa(g.h), (2.18)

holds for any vector fields £ and F tangent to % and a smooth function f. Similarly,
a submanifold N is said to be 2-pseudo-parallel if R(E, F) - Vi=f5(Ric, Vh) and it
is Ricci generalized pseudo-parallel [23] if R(E, F) - h= fé(ﬁzJC, h) for any £, F € V.

3. INVARIANT SUBMANIFOLD OF A HYPERBOLIC SASAKIAN MANIFOLD

A submanifold N of an n-dimensional hyperbolic Sasakian manifold V is said to
be invariant if the structure vector field & is tangent to N at every point of N and
@€ is tangent to N for every vector field £ tangent to N at every point of N. i.e.,

¢(TN) C TN at every point of N.( see [7], [L7], [26], [32], [18], [19], [20]).
In an invariant submanifold N of a hyperbolic Sasakian manifold V [[7], we have

Vel = —¢€, (3.1)

RE, &) =0, A&, oF)=h(pE,F) = oh(E,F), (3.2)
(Ved)(F) = (Veo)(F) + h(E, ¢F) — oh(E, F), (3.3)
R(E, F)E =n(F)E —n(€)F, (3.4)
R(&EVF = g(€, F)é —n(F)E, (3.5)

Q¢ = (n—1)¢, Ric(£,€) = (n—1)n(é). (3.6)

In light of the aforementioned outcome, we aim to study the invariant submani-
fold of a hyperboli/cvSasakian manifolds satisfying some geometric conditions such
as Q(h,R)=0, Q(Ric, h)=0, Q(Ric, Vh)=0, Q(Ric,R - h)=0, Q(g, Z - h)=0 and
Q(ch - h)=0. Sections 5 and 6 concern with the study of conformal n-Ricci-
Yamabe solitons on invariant submanifolds of hyperbolic Sasakian manifolds and
obtain some interesting results. Next we have investigate invariant submanifold
whose second fundamental form % satisfies [29]

(Veh)(F,G) = e1(E)M(F,G) + ea(F)R(E,G) + e3(G)R(E, F), (3.7)

where €7, €2 and €3 are non-zero 1-forms defined by €1 (£)=g(&, 61), €2(E)=g(&, 02)
and €3(£)=g(&,03) in section 7. Finally, in section 8 we construct a non-trivial
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example of an invariant submanifold of hyperbolic Sasakian manifold which verify
the result.

Theorem 3.1. An invariant submanifold of a hyperbolic Sasakian manifold satisfies
Q(h,R)=0 if and only if it is totally geodesic.

Proof. The condition O(h, R)(€,F,G;U,V)=0 on N with the help of (??) implies

R(U M V)E, F)G — R(E, (U A, V)F)G — R(E, FYU Ay V)G = 0, (3.8)
where (U Ap V) is the endomorphism and it is defined by
(UNAL V)W = RV, VU — R(U, W)V. (3.9)

With the help of (@) and (@), we get

— h(V,ERWU, F)G + hU,E)R(V, F)G

— RV, F)R(E, F)G + kU, F)R(E, V)G (3.10)

— h(V.G)R(E, F)G + h(U,G)R(E, F)G = 0.
For fix V=G=¢ in (), using (@) and (@), we have

AU, E)[n(F)E + F] + h(U, F)[n(€)§ — €] = 0. (3.11)

After contracting () over F, we yields (U, E)=0. Thus the manifold is totally
geodesic. Conversely, if h(E 7~.7-"):0, for any vector fields £ and F on N, then it
follows from () that Q(h, R)=0. This proves the theorem. O

Theorem 3.2. An invariant submanifold of a hyperbolic Sasakian manifold satisfies

@(RNZC, h)=0 if and only if it is totally geodesic.

Proof. Let the invariant submanifold Nofa hyperbolic Sasakian manifold V satisfies

~

Q(Ric, h)=0. Then we have
0 = O(Ric,h)(E,F:U,V)

(U Az VIE,F) — h(E, (U Nz V)F), (3.12)
where (U A2 V)W is defined as
(U N V)W = Ric(V, W)U — Ric(U, W)V. (3.13)

By virtue of (), we get from (), that
—  Ric(V,E)h(U, F) + RicU,E)A(V, F)

—  Ric(V, F)ME,U) + Ric(U, F)R(E, V) = 0. (3.14)
After taking U=F=¢ in (), using (@) and (@) we yields
(n—1h(&,V) =0, (3.15)

which implies that (€, V)=0, for any vector fields £ and £ on V. So, N is totally
geodesic. Conversely, statement is obvious. This proves the theorem. O
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Theorem 3.3. An invariant submamfald of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q(ch Vh) =0.

Proof. We assume that Q(Rz’c, Vﬁ):O, on N implies that
O(Ric, R(E,F) - h)(G,U,V,W) = 0. (3.16)
Using (?7?), equation () can be written as
~ (Veh)(Ric(W.G)V.U) + (Veh) (Ric(V. G)W.U)

—  (Veh)(G, RicOV,U)V) + (Veh)(G, Ric(V,U)W) = 0. (3.17)
For fix, G=U=V=¢ in (), using (@) we get
2mh(U, $€) = 0, (3.18)

which implies that (U, pE)=0. That is, N is totally geodesic. So, the proof is
finished. g

Theorem 3.4. An invariant submamfold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q(ch R - h)=0.

Proof. Tt follows from the condition Q(Ric, R - h)=0 on N that
O(Ric, R(E, F) - h)(G, U, V, W) =0, (3.19)

for any vector fields €, F,G,U,V, W on N. In view of (??), above equation can be
written as

— (R(&, F)A(Ric(W,G)V,U) + (R(E, F)h(Ric(V,G)W, U)
— (R(E, F)(G, RicOW,)U), V) + (R(E, FYAG, Ric(V, ) U),W). (3.20)
After taking F=G=U=W=¢ in (B.20), we have

Ric(¢, E)A(R(E,£)E,V) = 0. (3.21)
Using (@) and (@), we get from () that 2m A(€,V)=0, which implies that
R(€,V)=0. This complete the proof. O

4. INVARIANT SUBMANIFOLDS ADMITTING OQ(g, Z - h)=0 AND O(Ric, Z - h)=0

The notion of generalized quasi-conformal curvature (briefly, GQC) tensor [30] and
is defined on an (2n + 1)-dimensional manifold V

ZEFIG = S [(1+2ma—b)— {1+ 2000 + b)) CE F)G

+ [ —=b+4+2nalD(E,F)G+2n(b—a)P(E,F)G
+

;Z; 1(6— D[1 + 2n(a + b)]CH(E, F)G, (4.1)




286 S. K. Yadav , S. K. Hui and R. Prasad

for all vector fields &£, F, G on V and a,b,c € R. The GQC curvature tensor is
the generalization of Riemann curvature tensor R for a=b=c=0; Conformal cur-
vature tensor C[11] for a=b=—51+, c=1; Conharmonic curvature tensor C=[21]

for a=b= ¢=0; Concircular curvature tensor D[31] for a=b=0, c=1; Projec-

1
In—1°
tive curvature tensor P[31] for a:—%, b=0, ¢=0 and m-projective curvature tensor
M{25], for a=b=—21, ¢=0.
After simplification (@) on V takes the form
Z(E,F)G = R(E,F)G+ a[Ric(F,G)E — Ric(E,G)F]
+ blg(F,G)QE — g(£,G)QF)

ST b atO(F O g€.OF, (1)

where 7 being the scalar curvature of the manifold. So, first we lead to the following;:

Theorem 4.1. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q(g, Z - h)=0, provided T # M:Hl)
Proof. We suppose that @(g, Z - h)=0 on N implies that

@(972(57‘F) ’ h)(gvu)vv W) =0,
for any vector fields &, F,G,U,V, W on V. With the help of (?7), above equation
can be written as

- g(Wﬂ)( (5 f) h)(G,V)
WV, U)(Z(E,F)-h)(G, W) =0. (4.3)

On substituting F=U=G=V=¢ in (@), we have

Ric(€,E)h(Z(€,)E, W) =0, (44)
which implies with the help of (@) that

2m +1°2
We obtain the statement of Theorem @ O

[ 7 (1+a+b)—2m(a+b)—1} R(E,W) = 0.

As per above consequence, we can state the following corollaries

Corollary 4.2. An invariant submanifold Of\a hyperbolic Sasakian manifold is to-
tally geodesic for each of (i) Q(g,C-h)=0,(i7)Q(g, D-h)=0, provided T # 2m(2m+1).

Corollary 4.3. Let N be an invariant submamfold of a hyperbolic Sasakian manifold
V. Then for each of (i) Q(g,C*-h)=0, (i) Q(g,P-h)=0 and (iii)Q(g, M - h)=0, N

is not totally geodesic.

Now we prove our next result.
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Theorem 4.4. An invariant submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if Q(Ric, Z - h)=0, provided T # 2m(2m+1)

C
Proof. Assuming that Q\(Ez/c, Z - h)=0, we have
O(Ric, Z(€,F) - h)(G, U, V,W) = 0,

for any vector fields £, F,G,U,V, W on V. By virtue of (??), above equation can be
written as

—Ric(W,G)(Z(E,F)-h)(V,U) + Ric(V,U)(Z(E,F)-h)W,U)
—  RiecW,U)(Z(E,F)-h)(G,V)
+ Ric(V,U)(Z(E,F)-h)(G,W)=0. (4.5)
After replacing F=U=G=V=¢ in (@), we obtain
Ric(&, §)h(Z(E,£)EW) =0, (4.6)
which implies with the help of (@) that

2m +1°2
This finished the proof. g

{ < (1+a+b)—2m(a+b)—1} H(E,W) = 0.

On behalf of theorem @, we state the following corollaries

Corollary 4.5. An invariant submanifold of a hyperbolic Sasakian manifold is to-
tally geodesic for each of (i) Q(Ric,C - h)=0,(ii)Q(Ric,D - h)=0, provided T #
2m(2m +1).

Corollary 4.6. Let N be an invariant submamfold of a hyperbolic Sasakian manifold
V. Then for each of (i) Q(Ric,C-h)=0, (i) Q(Ric,P - h)=0 and (iii) O(Ric, M -
h)=0, N is not totally geodesic.

5. CONFORMAL U—RICCI—YAMABE SOLITONS ON INVARIANT SUBMANIFOLD

Let (g,&, K, 1, u, v) be the conformal n-Ricci-Yamabe soliton of type (k, ) on invariant
submanifold of a hyperbolic Sasakian manifold. Then from (@;, we have

(Leg)(E,F) + 2/6]/%70(5,.7:) + 2011 — %(ﬁn+ Dlg(&, F)+2vn(E)n(F) =0. (5.1)

Since N is invariant in V, then —¢&,¢ € TN, then using (@) and (@), we get

(£¢9)(E,F) = g(Ve&, F) + (€, V&) = 0. (5.2)
Adopting (@) and () we yields
Ricl€, F) = [5—(np+2) + =~ Yg(e F) = Untem®),  (63)
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which implies that N is 7-Einstein. Also from () and (), n(E)H=0, i.e., H=0
and therefore N is minimal in V. So, we turn up the result:

Theorem 5.1. If (g,&,k, 1, pu, v ) be the conformal n-Ricci- Yamabe soliton of type
(k,1) on invariant submanifold N of a hyperbolic Sasakian manifold V. Then we
have_

(i) N is n-FEinstein,

(ii) N is minimal and

(iii) & is a killing vector field in V.

We obtain the following results for different value of (k=1, [=0, k=0, [=1, and k=1,
I=1 (cf. [6],[15],[16]):

Corollary 5.2. If (g9,&,1, k, u,v) be as the conformal n-Ricci soliton or conformal
n-Yamabe soliton or conformal n-Einstein soliton on invariant submanifold N of a
hyperbolic Sasakian manifold V. Then we obtain the following

(i) N is n-Binstein,

(ii) N is minimal and

(iii) & is a killing vector field in V.
Also from (@) we turn up

W Ric(€,€) = p— 5 (mp+2) — 7 —v. (5.4)
Equating (@) and (@), we get
u—y:%(nﬁ+2)+%——n(n—l). (5.5)

In particular, if we put v=0, then conformal n-Ricci-Yamabe soliton of type (k1)
becomes conformal Ricci-Yamabe soliton of type (k, 1) with p=5-(np+2)+Z-k(n —
1). So, we state the result:

Theorem 5.3. Let (g,&, K, 1, 1, ) be the conformal n-Ricci- Yamabe solitons of type
(K, l) on invariant submanifold N of a hyperbolic Sasakian manifold V. Then
p=5-(np + 2)+lT +v-k(n — 1). Also, the conformal Ricci-Yamabe solitons on N
is steady, expanding or shrmkmg according as 7':%[2/@(71 -1 - (p+ %)], T >
126(n—1) = B+ 2)], or 7 < $[26(n—1) — (p+ 2)], respectively.

Also, in view of Theorem @, one can state the followings corollaries.

Corollary 5.4. A conformal Ricci soliton (g,&, i, 1,0) on an invariant submanifold
N of a hyperbolic Sasakian manifold V is steady, ewpcmdmg or shrinking according
as p=[2(n+1) — 2], p> [2(n + 1) — 2] or, p < [2(n + 1) — 2], respectively.

n

Corollary 5.5. A Ricci soliton (g,&, u, 1,0) on an invariant submanifold N of a
hyperbolic Sasakian manifold V is always shrinking.
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Corollary 5.6. A conformal Yamabe soliton (g,&, i1,0,1) on an invariant subman-
ifold N of a hyperbolzc Sasakzan mamfold V is steady, expanding or shrinking ac-
cording as T=-(p+ 2), 7> —(p+ 2) or, T < —(p+ 2),respectively.

Corollary 5.7. A Yamabe soliton (g,&,1,0,1) on an invariant submanifold N of

a hyperbolic Sasakian manifold V is steady, expanding or shrinking depending upon
the sign of scalar curvature T.

Corollary 5.8. A conformal Finstein soliton (g & 1,1, —1) on an invariant sub-
manifold N of a hyperbolic Sasakian manifold V is steady, ezpandmg or shrinking
according as T=[2(n — 1)+ (p+ )], 7> 2n — 1)+ 5+ 2)] or, T < [2(n — 1) +
(p+ 2)],respectively.

Corollary 5.9. An Einstein soliton (g,&, pu, 1,—1) on an invariant submanifold N

of a hyperbolic Sasakian manifold V is steady, expanding or shrinking according as
T==2(n—-1), 7> —=2(n—1) or, 7 < —2(n — 1),respectively.

6. CONFORMAL U—RICCI—YAMABE SOLITON WITH CONCIRCULAR VECTOR FIELD
ON INVARIANT SUBMANIFOLDS

A vector field 7 on a (semi-) Riemannian manifold N is said to be a concircular
vector field (or, geodesic fields) [13] if it satisfies

Ver =yE& (6.1)

for any £ € TN, where V denotes the Levi-Civita connection of the metric g and ¥
is a non-trivial smooth function on N. Recently, Chen [16] studied the properties of
Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular
vector field. Particularly, if we choose =1 in equation (f.l]), then the concircular
vector field 7 is called concurrent vector field. Then from Lemma 4.1[chaubey], we
can write
r=n 47t (6.2)
where 7 € TN, 7t € D and 7 € D+. Now, for a concircular vector field 7 on ivf, from
(6.1) we have
P& = %gﬂ't + 657TJ‘, (6.3)

for any £ € D. Using (@) and () and comparing the tangential and normal
components , we yields

hE,mt) = —Vent, Vern' =¢€ - A LE. (6.4)
Now, we can state the following

Theorem 6.1. Let N be an invariant submanifold ofivf admitting conformal n-Ricci-
Yamabe soliton with concircular vector field w. Then the Ricci tensor Ricp on the
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tnvariant distribution D is given by

Riep(€,F) = — A+ p—T — L (np+2)g(€. F)
— g(AE,F), )+ v} (6:5)

for any vector field £,F € D.
Proof. Adopting (@) together with the definition of Lie-derivative, we have
(Sﬂtg)(ga f) = 2¢g(€> ]:) - 2g(h(51 f)v Wl)' (66)

Let the invariant submanifold N admits conformal n-Ricci-Yamabe soliton, so from
(@) we yields

— 1
(£:t9)(E, F)+2kRicp(E, F)+[2u—11— ﬁ(ﬁn+2)]g(5, F)+2vn(E)n(F) =0. (6.7)
Therefore, using (@) and (@), we can easily get the required result (@) O

Particularly, if we choose 7 is a concurrent vector field and (g, &, , 1, i1, V) is confor-

mal n-Ricci-Yamabe soliton in N of V. Then by same fashion as the above conse-
quence, we can state:

Corollary 6.2. If an invariant submanifold N of a hyperbolic Sasakian manifold v
admits conformal n-Ricci- Yamabe soliton with concurrent vector field w. Then the
invariant distribution D of N is an n-Finstein, provided the invariant distribution
D ofﬁ? is D-geodesic.

Corollary 6.3. Let N be an invariant submanifold of v admitting conformal n-

Ricci- Yamabe soliton with concurrent vector field w. Then the Ricci tensor Ricp on
the invariant distribution D is given by

Rico(.F) = —{(L+p— 0 — L (np+2))g(€. F)
— g(A(€, F),m) +vn(E)n(Y)} (6.8)

for any vector field £,F € D.

Corollary 6.4. Assume that an invariant submanifold N of V admits conformal
n-Ricci-Yamabe soliton with a concurrent vector field w. If the invariant distribution
D of N is D-geodesic, then the invariant distribution D is n-FEinstein.

Finally, with the help of Theorem EI, we obtain the following corollaries for different
value of (k=1, I=0; k=0, [=1 and k=1, I[=1):

Corollary 6.5. If an invariant submanifold N of a hyperbolic Sasakian manifold v
admits conformal n-Ricci- Yamabe soliton with a concircular vector field w, then the
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Ricci tensor Ei_ép on the invariant distribution D is given by

Ricp (€. F) = {w F e p o 2)a(E, F) - a(h(E.F) ) + un<e>n<f>} ,

2n
(6.9)
for any vector field £, F € D.

Corollary 6.6. If an invariant submanifold N of a hyperbolic Sasakian manifold v
admits conformal n-Yamabe soliton with a concircular vector field w, then the scalar
curvature on the invariant distribution D is given by

T:Ww—u)—(m%). (6.10)

Corollary 6.7. If an invariant submanifold N of a hyperbolic Sasakian manifold v
admits conformal n-FEinstein soliton with a concircular vector field w, then the Ricci
tensor Ricp on the invariant distribution D s given by

T 1

Ricp(&,F) = — {(w+u+ 5o

(np+ 2))9(E. F) — g(h(€.F).7") + un<£>n<f>}

(6.11)
for any vector field £, F € D.

7. INVARIANT SUBMANIFOLD WHOSE SECOND FUNDAMENTAL FORM /i IS WEAKLY
SYMMETRIC TYPE

In this section, we assume_that invariant submanifold V has parallel second funda-
mental form. Then from (2.14), we have

(Veh)(F.G) = V& (W(F,G)) — (Ve F.G) — W(F, VeG), (7.1)
For fix, G=¢ in (7.1), using (B.1)) and (B.9), we get
(Veh)(F, &) = oh(E, F). (7.2)
In view of (@) and (@) one can easily bring out
(Veh)(F,€) = es(E)(E, F). (7.3)
Equating (7.9) and ([.9), we yields
[¢ — es(§]A(E, F) =0. (7.4)

Thus, we turn up to the following:

Theorem 7.1. An invariant submanifold N of a hyperbolic Sasakian manifold v
is totally geodesic if second fundamental form h is of the types (i) symmetric, (ii)
recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly
pseudo symmetric, provided ¢ # €3(&).
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8. EXAMPLE

Let R™ be an n-dimensional space of real number and we define @5:{(% Y, 2, U, V) €
R5Y. Let {e1,ea,e3,e4,e5} be a set of linearly independent vector fields of V° given
by
0 0 0 0 N 0 0
€1 = —QY—=—, €2 = —, €3 = —, €4 = —QV— + —, €5 = —.
! Vo2 oy’ P 92 ! 9z " ou ° T o
We define the metric § of V® by the following relation
glea, €2) = g(es, e3) = gles,e5) = —1, gler,e1) = glea, e4) = 1.
Let 1 be the 1-form defined by 1(£)=g(E, e3), for any € € V® and the (1, 1)-tensor
field ¢ of V° as
per = ez, pea = e1, gez =0, pes = e5, Pes = ey.
By the use of linearity properties of ¢ and g, we have
¢%ei = e; +n(e)é, nles) = —1,
hold for i=1,2, 3, 4,5 and £&=e3. Also, for {=eg, V5 satisfies g(ei,e3)=n(e;), g(pe;, e;)=-
g(ei, pe;) and g(oe;, pej)=g(de;, ;) +n(ei)n(e;), where i, j=1,2,3,4,5. Now, we can
easily compute
aesg, ifi=1,5=2.
lei,ej] = aes, ifi=4,j=05.
0, otherwise.

Using Koszul’s formula, we obtain
~ ~ a ~

a ~ ~

velel - 07 v8162 - 5637 vele?) - 5627 v6164 - 07 v6165 = 07
vezel - 5637 ve2€2 == 07 v6263 - 561 v6264 - 07 v6265 == 07
~ o ~ ~ ~ Q ~ o
Vese1r = Sea, Vegea = se1, Vegez =0, Vegea = €5, Veges = ey,

2 2 2 2
~ ~ ~ a = ~ o
v646]. = 07 v6462 = 0; v6463 = 565 v8464 =0, ve465 = Z€3,

2 2

V€561 = 0, ve5€2 = 0, Ve563 = 564 V6564 = 563, V€5€5 =0.

Thus for e3=¢ and a=-2, it can be easily verifies that Ve{=-¢¢ for all £ € TV5.
So, the manifold V° equipped with the structure (¢, &,n, g) is an almost hyperbolic
Sasakian manifold of dimension 5. B B

Let f be an isometric immersion from N to V defined by f(z,y,2)=(z,y,2,0,0).
Then we define N={(z,y,2) € R : z # 0}, where (x,y,2) are the standard co-
ordinates in R3. Let {e1, e, e3} be linearly independent global frame on N given
by

0 0 0

&7 62_@’ 63_&'

e1 = —ay
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Thus we have
gler,er) =1, glez,e2) = gles,e3) = —1.
Also, the (1,1)-tensor field ¢ of N3 as follows

pe1 = e, ez =e1, geg =0.
Adopting the linearity properties of ¢ and ¢, we have
¢*ei = ei +n(e)é, n(€) = —1,
holds for i=1,2,3 and £=e3. Again, for £=e3, N3 satisfies
9(dei, dej) = —g(ei, e5) —nei)n(e; ),

where ¢, j=1, 2, 3. Next, one can easily get
le1,e9] = aes, le1,e3] =0, [e2,e3] =0.

By the use of Koszul’s formula, we have

velel = Oa veleQ — _5637 vele?) = 5627 V62€1 - 5637 v6262 = 07

Ve,e3 = 2L Vese1 = 262 Vesea = 5L Veses = 0.

It is obvious that for es=¢ and a=-2, it satisfies Vg&=-¢€& for all £ € TNS. Thus,
the manifold N3 equipped with the structure (¢,¢&,n, g) is a hyperbolic Sasakian
manifold of dimension 3. We define the tangent space TN of N3 takes the form

TV=DaD e <>,

where D=< e; > and D+-=< ey >. Then we notice thaj pe1=-e2 € DJ-, for e; € D
and ¢eo=-e1 € D, for e € D~+. Hence, we can say that N3 under consideration is an
invariant submanifold of V. Also, from (2.9) we have A(e;, e]) = V .€;—Ve,e;. Thus

from the values of V .e; and V¢, e;, we notice that h(e;, ej)= =1 2 3. This
leads_to the submanifold is totally geodesic. So, T heorems @
and are verified.

The non-vanishing components of the curvature tensor R using the preceding rela-
tions

B o2 _ o2 B o2
Rer,ex)er = e R(e1,e3)er = 1 R(er,ex)er = —en
2 2 2
~ o ~ « ~ o
R(ea,e3)es = el R(er,e3)es = — e R(ez,e3)e3 = — e
Also the Ricci tensor S and scalar curvature 7 as:
. 2 . o2 2

Ric(ey,e1) = %, Ric(ea, e2) = Ric(es, e3) = —5 and 7 = —%. (8.1)
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Since, N3 in invariant on V®. Then. we set E=F=es into the identity (@), get
(Leg)(es,e3)=0. So from (@) and (@) which provides

1 2 lo? ka2

M—V:*<25+*)—T—T~ (8:2)

Hence the above equation proves that, p and v satisfies our result (@) for n=3
and a=-2 and g gives a conformal n-Ricci-Yamabe soliton of type (k,1) on the 3-
dimensional hyperbolic Sasakian submanifold N3 of the 5-dimensional hyperbolic
Sasakian manifold V3. Thus, we can conclude that the Theorem and Corol-
lary@,Corollary@, Corollary@, Corollary@, Corollary@ hold on N3,
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