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1. Introduction

The Bell polynomials Bn,k are defined as the coefficients of the following
formal double series

exp

(
u

+∞∑
k=1

xk
k!

tk

)
=
∑
n,k≥0

Bn,k (x1, x2, · · · )uk
tn

n!
. (1.1)

The Bell polynomials play an important role in combinatorics and
number theory and even in geometry. In fact, several special numbers
such as Stirling numbers of first or of second kind, and the Bell numbers
can be expressed as special values of Bell polynomials. It is interesting
to ask whether there exists a unified approach to the study of special
numbers. The goal of this work is to investigate this direction of research.
We discovered some new formulas for some classical special numbers,
and recovered some well-known identities in the literature. The method
relies on the use of Bell polynomials. More precisely, we succeed to
incorporate the techniques of the theory of generating functions mainly
the Bell generating function into this investigation of some new identities
for some special numbers. Some arithmetical applications are given. The
paper is divided into three parts. The first part consists of the use the
theory of generating functions in order to derive some new formulas.
In the second part, we apply this method to recover some identities
that appear in Djordjevic-Milovanovic�s book. The last part focuses on
some applications in number theory. The problem of finding a unified
approach for the theory of generating functions is not new and goes back
to Appell (1880). An Appell sequence (Pn(x))n∈N is defined as follows

A(t)ext =
+∞∑
n=0

Pn(x)
tn

n
. (1.2)

where A(t) is a function satisfying certain conditions. For instance the
Bernoulli polynomials form a special case of Appell polynomials. This
path of research was continued by several mathematicians. By consid-
ering

text+ytm

λet ± 1
(1.3)

which is essentially the generating function for Bell polynomials with
x1 = x, xm = m!y and xk = 0 for k ̸= 1,m, we are led to the 2D-
dimensional Apostol-Bernoulli and the 2D-dimensional Apostol-Euler,
see reference [2]. Later, this approach was generalized in reference [3].
We considered a large class of generating functions:

θ(t) exp

(
−

m∑
k=1

xkt
k

)
, (1.4)
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where θ(t) is a function having an explicit Laurent expansion near t = 0.
A special case of (1.4) is investigated in paragraph 2.1.

2. Bell polynomials and generating functions composition

Let x1, x2, x3, · · · be a countable set of variables. Another generating
function of exponential partial Bell polynomials Bn,k = Bn,k (x1, x2, · · · )
[7] is

1

k!

∑
n≥1

xn
tn

n!

k

=
∑
n≥k

Bn,k
tn

n!
. (2.1)

The exponential complete Bell polynomials Yn = Yn(x1, x2, · · · ) are de-
fined by:

exp

∑
n≥1

xn
tn

n!

 = 1 +
∑
n≥1

Yn
tn

n!
. (2.2)

Consequently

Yn =

n∑
k=1

Bn,k, Y0 = 1. (2.3)

We assume that B0,0 = 1 and Bn,0 = 0 if n > 0. Polynomials Bn,k are
homogeneous and have integral coefficients; their explicit formula is:

Bn,k (x1, x2, · · · ) =
n!

k!

∑
k1+···+kn=k

k1+2k2+···+nkn=n

(
k

k1, · · · , kj

) n∏
r=1

(xr
r!

)kr
. (2.4)

Some arithmetical properties of these polynomials are developed in [5].
This kind of polynomials and Cauchy product of generating functions
[11] are useful for reviewing most of the polynomials already studied in
[8], in order to unify their expressions. In what follows we recall the
link of these polynomials to generating functions theory. Let f (t) =∑

n≥0 ant
n and g (t) =

∑
n≥0 bnt

n be two generating functions, with an
and bn two sequences of numbers. The Cauchy product of f(t) and g(t)
is

f (t) g (t) =
+∞∑
n=0

n∑
k=0

akbn−kt
n. (2.5)

Let An and Bn be the numbers generated respectively by the functions
fog (for b0 ̸= 0 ) [14] and exp g (for b0 = 0), which means that

f ◦ g (t) =
∑
n≥0

An
tn

n!
and exp g (t) =

∑
n≥1

Bn
tn

n!
. (2.6)
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The expressions of sequences An and Bn by means of Bn,k are respec-
tively,

An =

n∑
k=0

Bn,k (b1, 2!b2, · · · ) f (k)(b0) (2.7)

and
Bn = Yn (b1, 2!b2, · · · ) , (2.8)

where f (k) is the k-th derivative of f . For the proof and more information
we refer to [12, 13, 15, 16, 17, 19] and [20]. The q-analog case is developed
in [18]. For α a complex number and b0 ̸= 0, let b

(α)
n be the sequence

of numbers generated by the function gα; namely gα(t) =
∑

n≥0 b
(α)
n tn.

Thereafter the explicit formula of b(α)n is

b(α)n =
1

n!

n∑
k=0

(α)k b
α−k
0 Bn,k (b1, 2!b2, · · · ) , (2.9)

where (α)k = α (α− 1) · · · (α− k + 1) is a falling number. For the proof,
we refer to [12] and [21, Identity 12 p.49]. In the case α = m a positive
integer, we just have

b(−m)
n =

1

n!

n∑
k=0

(−1)k k!

(
m+ k − 1

k

)
b−m−k
0 Bn,k (b1, 2!b2, · · · ) , (2.10)

Thereafter

b(−1)
n =

1

n!

n∑
k=0

(−1)k k!b−1−k
0 Bn,k (b1, 2!b2, · · · ) . (2.11)

Letting the polynomials A(t) =
∑m

j=0 ajt
j and B(t) =

∑r
j=0 bjt

j of
degree m and r respectively with coefficients in C[x]. We consider
the generating functions A(t)Bα(t) =

∑
n≥0 b

(A,α)
n tn for b0 ̸= 0 and

A(t) exp(B(t)) =
∑

n≥0 b
(A)
n tn for b0 = 0. Here aj = 0 and bk = 0 for

j > m and k > r. By means of the previous properties and Cauchy
product of generating functions we can easily show that

b(A,α)
n =

n∑
k=0

k∑
j=0

an−k

k!
(α)jb

α−j
0 Bk,j (b1, 2!b2, · · · ) (2.12)

and

b(A)
n =

n∑
k=0

k∑
j=0

an−k

k!
Bk,j (b1, 2!b2, · · · ) . (2.13)
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If b0 = 1 and α ∈ C\N, the identity (2.12) is reduced to

b(A,α)
n =

n∑
k=0

k∑
j=0

an−k

k!
(α)jBk,j (b1, 2!b2, · · · ) . (2.14)

This approach of studying generating functions is different of that adopted
in [3]; based on the use of the theory of zeta functions, which gives a
new description of special polynomials and special numbers as special
values of certain zeta functions such as the Riemann zeta function. One
can consult [23] for a description of the theory of zeta functions, and [4]
for some applications.

2.1. Main results. Let m be a positive integer. For polynomials of the
form g(t) := gm(t) = 1+ b1t+ bmtm with m ≥ 2, we obtain the following
theorem

Theorem 2.1. Polynomials b
(α)
n and b

(A,α)
n are given respectively by the

relations

b(α)n =

⌊ n
m⌋∑

j=0

(
α

n− (m− 1)j

)(
n− (m− 1)j

j

)
bn−mj
1 bjm (2.15)

and

b(A,α)
n =

n∑
k=0

⌊ k
m⌋∑

j=0

(
α

n− (m− 1)j

)(
n− (m− 1)j

j

)
an−kb

k−mj
1 bjm. (2.16)

Proof. Since we have

Bn,j (b1, 0, · · · , 0,m!bm) =
∑

j1+jm=j
j1+mjm=n

n!

j1!jm!
bj11 bjmm .

Thus
Bn,j (b1, 0, · · · , 0,m!bm) =

n!

j!

(
j

i

)
bj−i
1 bim,

with n = j− i+mi and the expression of b(α)n is immediate. The second
result follows from Cauchy product of A(t) and gα(t). □

Taking A(t) := Ar(t) = a0 + art
r, r ≥ 1 to deduce the following

corollary

Corollary 2.2. We have for n < r;

b(A,α)
n = a0

⌊ n
m⌋∑

j=0

(
α

n− (m− 1)j

)(
n− (m− 1)j

j

)
bn−mj
1 bjm, n < r
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and for n ≥ r the formulation

b(A,α)
n = a0

⌊ n
m⌋∑

j=0

(
α

n− (m− 1)j

)(
n− (m− 1)j

j

)
bn−mj
1 bjm

+ ar

⌊n−r
m ⌋∑

j=0

(
α

n− r − (m− 1)j

)(
n− r − (m− 1)j

j

)
bn−r−mj
1 bjm.

If m = 2 and (r, α) = (1,−1) we have

b(A,−1)
n = a0

⌊n
2 ⌋∑

j=0

(−1)n−j

(
n− j

j

)
bn−2j
1 bj2

− a1

⌊n−1
2 ⌋∑

j=0

(−1)n−j

(
n− r − j

j

)
bn−r−2j
1 bj2.

Regarding the identity(
n− j

j

)
=

n− j

n− 2j

(
n− j − 1

j

)
,

we get the following corollary

Corollary 2.3. For g(t) = g2(t) we have

b
(A,−1)
2n = a0(−b2)

n+

n∑
j=0

(−1)j
(
2n− 1− j

j

)(
2n− j

2n− 2j
a0b1 − a1

)
b2n−1−j
1 bj2

and

b
(A,−1)
2n+1 =

n−1∑
j=0

(−1)j+1

(
2n− j

j

)(
2n+ 1− j

2n+ 1− 2j
a0b1 − a1

)
b2n−j
1 bj2.

In order to compute polynomials b(A)
n generated by the function A(t) expBα(t)

we use the identities (2.8) and (2.9) as follows

exp gα(t) =
∑
n≥1

n∑
k=1

Bn,k

(
b
(α)
1 , 2!b

(α)
2 · · ·

) tn

n!
. (2.17)

The Cauchy product of A(t) and exp gα(t) conducts to

b(A)
n =

n∑
j=1

j∑
k=1

an−j

j!
Bj,k

(
bα1 , 2!b

(α)
2 · · ·

)
. (2.18)
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Table 1. Examples of polynomials in the book [8]

Polynomial Name Polynomial Name
G

(−α)
n (x) Gegenbauer [31, 33] Pn,k(x) Convolved Pell [8]

An(x) Horadam [8, 25] Jn(x) Jacobsthal [27]
fn(x) Fermat (first kind) [8] Bn(x) Horadam [8]
Tn(x) Chebyshev (second kind) [25] Qn(x) Pell-Lucas [26]
Pn(x) Pell [26] Qn,k(x) Convolved Pell-Lucas [9]
Fn(x) Fibonacci [32] π

(a,b)
n (x) Mixed Pell [24]

Table 2. Explicit formulae of polynomials in Table 1

Polynomial Explicit formula
G

(−α)
n (x)

[(
1− 2xt+ t2

)−α
] ∑⌊n/2⌋

j=0

(−α
n−j

)(
n−j
j

)
(−2x)n−2j

An(x)
[(
1− pxt− qt2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
qj(px)n−2j

fn(x)
[(
1− xt+ 2t2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
(−2)jxn−2j

Tn(x)
[(
1− 2xt+ t2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
(−1)jxn−2j

Pn(x)
[(
1− 2xt− t2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
(2x)n−2j

Fn(x)
[(
1− xt− t2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
xn−2j

P
(k)
n (x)

[(
1− 2xt− t2

)−k−1
] ∑⌊n/2⌋

j=0

(−k−1
n−j

)(
n−j
j

)
(−1)n−j(2x)n−2j

Jn(x)
[(
1− t+ 2xt2

)−1
] ∑⌊n/2⌋

j=0

(
n−j
j

)
(−2x)j

For A(t) = 1, letting α = −1 in the identity (2.18) to obtain

b(A)
n =

1

n!

n∑
k=1

bn,k

(
b
(−1)
1 , 2!b

(−1)
2 , · · ·

)
. (2.19)

With the generating functions ABα and A expBα, we construct finitely
many families of polynomials including Fibonacci, Gegenbauer, Jacob-
sthal, Fermat-Lucas polynomials (see Table 1 and Table 2) and other
interesting polynomials of the book [8]. The notation an(x)[f(x, t)]
in Table 2 means that f(x, t) =

∑
n≥0 an(x)t

n. For the polynomials
Bn(x), Qn(x), Qn,k(x) and π

(a,b)
n (x) in Table 1, we recall that

1 + qt2

1− pxt− qt2
=
∑
n≥0

Bn(x)t
n,
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1 + t2

1− 2xt− t2
=
∑
n≥0

Qn(x)t
n,

(
2 + 2xt

1− 2xt− t2

)k+1

=
∑
n≥0

Qn,k(x)t
n,

and
(2x+ 2t)b

(1− 2xt− t2)a+b
=
∑
n≥0

π(a,b)
n (x)tn,

where a, b are two integers such that b ≥ 1 and a + b ≥ 1. The closed
formulae of Bn(x) and Qn(x) are respectively

Bn(x) =

⌊n/2⌋∑
j=0

(
n− j

j

)
qj(px)n−2j + q

⌊n−2/2⌋∑
j=0

(
n− j − 2

j

)
qj(px)n−2j−2

and

Qn(x) =

⌊n/2⌋∑
j=0

(
n− j

j

)
(2x)n−2j +

⌊n−2/2⌋∑
j=0

(
n− j − 2

j

)
(2x)n−2j−2.

To compute explicit formula of Qn,k(x), we can choose between two
methods. The first consists to write(

2 + 2xt

1− 2xt− t2

)k+1

= 2k+1 (x+ t)k+1 (1− 2xt− tp2
)−k−1

.

Since

(x+ t)k+1 =

k+1∑
j=0

(
k + 1

j

)
xk−jtj ,

then

Qn,k(x) = 2k+1
n∑

j=0

(
k + 1

n− j

)
xk−n+jPj,k(x).

For the second we have

2
x+ t

1− 2xt− t2
= 2 (x+ t)

∑
n≥n

Pn(x)t
n+2x+2

∑
n≥1

(xPn(x)− Pn−1(x)) t
n.

It is obvious to remark that

Qn(x) =
1

n!

n∑
j=0

j!

(
k + 1

j

)
(2x)k−j+1Bn,j (1!s1(x), 2!s2(x), · · · ) ,

where sr(x) = xPn(x)− Pn−1(x). The recurrence relation [8] of π(a,b)
n is

π(a,b)
n (x) = 2b

n∑
j=0

(
b

j

)
π
(a+b,0)
n−j (x)xb−j . (2.20)
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Since we have
π
(a,b)
n+1 (x) = b(A,−a−b)

n ,

where

A(t) = 2b(x+ t)b = 2b
b∑

j=0

(
b

j

)
xb−jxj and g(t) = 1− 2xt− t2.

Systematically we have

π
(a,b)
n+1 (x) = 2b

n∑
j=0

⌊(n−j)/2⌋∑
i=0

(
b

j

)(
−b− a

n− j − i

)(
n− j − i

i

)
× (−1)n−j+i2n−j−2ixn+b−2j−2j .

We end this section by examples of generating function of the form
exp tgα. Let the generating function

exp(b1t+ bmtm) =
∑
n≥0

b(⋆)n tn. (2.21)

Since

b(⋆)n =
1

n!

n∑
k=0

Bn,k (b1, 0, · · · , 0,m!bm) .

and
Bn,k (b1, 0, · · · , 0,m!bm) =

n!

k!

(
k

j

)
bk−j
1 bjm,

for n = k − j +mj and zero otherwise. We conclude that

b(⋆)n =

⌊n/m⌋∑
k=0

1

(n− (m− 1)k)!

(
n− (m− 1)k

k

)
bn−mk
1 bkm. (2.22)

The two variables Hermite Kamp� de F�riet polynomials Hn(x, y) [1] are
a special case of b(⋆)n . We have

exp
(
xt+ yt2

)
=
∑
n≥0

Hn(x, y)
tn

n!
. (2.23)

Taking m = 2, b1 = x and b2 = y in the identity (2.22) to deduce that

Hn(x, y) = n!

⌊n/2⌋∑
k=0

xn−2kyk

k!(n− 2k)!
. (2.24)

We have just another proof of the result already found in [1] and gener-
alized in [19]. Regarding the identity

(1 + bmtm)−α =
∑
n≥0

(
−α

n

)
bnmtmn,
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we write

(1 + bmtm)−α =
∑
n≥0

In,m

(
−α
n
m

)
b

n
m
m tn.

The sequence In,m is one if n is a multiple of m and zero otherwise. In
the same way we have

a1t

1 + bmtm
= a1t

∑
n≥1

(
−1
n
m

)
In,mbnmtn.

The homogenization of the terms of the above series gives
a1t

1 + bmtm
=
∑
n≥1

a1

(
−1
n−1
m

)
In−1,mbn−1

m tn.

Letting

exp

(
a1t

1 + bmtm

)
=
∑
n≥0

b(c)n (x)tn.

Thus

b(c)n =
1

n!

n∑
j=0

bn,j

(
· · · , a1(−1)r−1Ir−1,mbk−1

m , · · ·
)
.

The computation of this family of Bell polynomials states that

bn,j

(
· · · , a1(−1)r−1Ir−1,mbk−1

m , · · ·
)
= ak1 (−bm)n−k Bn,k (I0,m, I1,m, · · · ) ,

and

b(c)n (x) =
1

n!

n∑
j=0

ak1(−bm)n−kBn,k (I0,m, I1,m, · · · ) . (2.25)

Now we consider

(1 + bmtm)−α exp

(
a1t

1 + bmtm

)
=
∑
n≥0

b(A1)
n tn.

The Cauchy product of (1 + bmtm)−α and exp
(

a1t
1+bmtm

)
conducts to

b(A1)
n (x) =

n∑
k=0

k∑
j=0

1

k!
aj1(−1)k−jIn−k,m

(
−α

n− k

)
bn−j
m Bk,j (I0,m, I1,m, · · · ) .

The explicit form of Bn,k(I0,m, I1,m, · · · ) depends on the divisibility on
m and remains an open question. Many authors are interested in this
kind of problems, we can cite [30] about some explicit formulas of certain
Bell polynomials.
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3. Consequences

In this section, we use the results of the previous sections to establish
some new identities in number theory. Recently we introduced the Fer-
mat arithmetical function f+

n (a, b) = an + bn for a and b real numbers
and proved that

f+
2n(a, b) = 2(−ab)n +

n−1∑
j=0

n

n− j

(
2n− j − 1

j

)
(−ab)j(a+ b)2(n−j)

and

f+
2n+1(a, b) =

n∑
j=0

2n+ 1

2(n− j)− 1

(
2n− j

j

)
(−ab)j(a+ b)2(n−j)+1.

It is reported that there is a misprint in the formula (2.7) of Theorem
2.2 [12]. The generating function is

2− (a+ b)t

1− (a+ b)t+ abt2
=
∑
n≥0

f+
n (a, b)tn. (3.1)

This generating function corresponds to the function Agα2 , where α =
−1, A(t) = 2 − (a + b)t and g2(t) = 1 − (a + b)t + abt2. Thus we can
write

(an − (−b)n)2

(a+ b)2
=

n−1∑
j=0

n

n− j

(
2n− j − 1

j

)
(−ab)j(a+ b)2(n−j−1) (3.2)

and

a2n+1 + b2n+1

a+ b
=

n∑
j=0

2n+ 1

2(n− j)− 1

(
2n− j

j

)
(−ab)j(a+ b)2(n−j). (3.3)

The quantities

2n∑
j=0

2n+ 1

2n− j + 1

(
4n− j + 1

j

)
(−ab)j(a+ b)4n−2j

and
n∑

j=0

2n+ 1

2(n− j)− 1

(
2n− j

j

)
(−ab)j(a+ b)2(n−j)
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are integers. For the pair (a, a) we find

(1− (−1)n)2

n
=

n−1∑
j=0

(−1)j

n− j

(
2n− j − 1

j

)
4n−j , (3.4)

1

2n+ 1
=

n∑
j=0

(−1)j

2n− 2j + 1

(
2n− j

j

)
4n−j . (3.5)

Substituting successively 2n, 2n+ 1 in identity (3.4) to get
2n−1∑
j=0

(−1)j

2n− j

(
4n− j − 1

j

)
42n−j = 0,

1

2n+ 1
=

2n∑
j=0

(−1)j

2n− j + 1

(
4n− j + 1

j

)
42n−j .

Thus
2n∑
j=0

(−1)j

2n− j + 1

(
4n− j + 1

j

)
42n−j =

n∑
j=0

(−1)j

2n− 2j + 1

(
2n− j

j

)
4n−j .

3.1. Application to Jacobsthal-Lucas and Mersenne numbers.
The Jacobsthal-Lucas numbers [6] are defined by the recursive formula

jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1. (3.6)

The binet formula of this sequence is given by

jn = 2n − (−1)n. (3.7)

j2n = M2n is a Mersenne number. We recall that Mn is given by relation
Mn = 2n − 1. Eakin [10] gave the following combinatorial partition of
Mn

Mn =

(
2n

n

)−1 n∑
j=0

n+ 1

j

(
2n− 2j

n− j

) ⌊(j−1)/2⌋∑
k=0

(−1)j
(
2j

k

)(
n+ 3j − 2k

j − 2k − 1

) .

From (3.2) we obtain combinatorial formulations for the squares:

j2n =

n−1∑
j=0

n

n− j

(
2n− j − 1

j

)
(−2)j9n−j (3.8)

and

M2
n =

n−1∑
j=0

n

n− j

(
2n− j − 1

j

)
2j . (3.9)
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The Fermat numbers Fn = 22
n
+ 1 [29] lie to generalized sequence of

numbers F ⋆
n = 2n + 1. From (3.3) we obtain the identity

F ⋆
2n+1 = 3

n∑
j=0

2n+ 1

2n− 2j + 1

(
2n− j

j

)
(−2)j9n−j (3.10)

and

M2n+1 =
n∑

j=0

2n+ 1

2n− 2j + 1

(
2n− j

j

)
2j . (3.11)

To compute M2n we use the relation M2n+1 − 1 = 2M2n:

M2n =
n∑

j=1

2n+ 1

2n− 2j + 1

(
2n− j

j

)
2j−1. (3.12)

Since j2n = F ⋆
2n − 2(−1)n2n, then from identity (3.2) we deduce that

F ⋆
2n = (−1)n2n+1 +

n−1∑
j=0

2n+ 1

2n− 2j + 1

(
2n− j

j

)
(−2)j9n−j . (3.13)

Catarino et al. [6] proved that M2
n = 4n −Mn+1, the expression of Mn

without regarding the parity of n is

Mn = 4n−1 −
n−2∑
j=0

n− 1

n− j − 1

(
2n− j − 3

j

)
2j . (3.14)

It is easy to verify that F ⋆
2n+1 is a multiple of 3 and a multiple of 2n+1

if and only if
n∑

j=0

1

2n− 2j + 1

(
2n− j

j

)
(−2)j9n−j

is an integer. The first three cases are 3|F ⋆
3 , 9|F ⋆

9 and 27|F ⋆
27. Similarly

M2n is a multiple of 2n+ 1 if and only if
n∑

j=1

1

2n− 2j + 1

(
2n− j

j

)
2j−1 ∈ N.

The first cases are 3|M2, 5|M4, 7|M6, 11|M10, 13|M12 and 17|M16. So are
the sequences 2n + 1|F ⋆

2n+1 and 2n + 1|M2n infinite? Is the sequence
2n + 1|M2n+1 without values or does it admit an infinity? For which
value of n, the quantities

n∑
j=0

1

2n− 2j − 1

(
2n− j

j

)
(−2)j9n−j and

n∑
j=1

1

2n− 2j − 1
2j−1

are integers?
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3.2. Application to power products. Let m be a positive integer, in
what follows we are interested by writing mn as a linear combination of
mk,0 ≤ k ≤ n: mn =

∑n−1
k=0 akm

k, ak ∈ Q. This writing is inspired from
the representation of integers as linear combinations of power products
[22]. First consider c = a2 and d = b2 to write identities (3.2) and (3.3)
in the following forms

cn+dn−2
(
−
√
cd
)n

=

n−1∑
j=0

n

n− j

(
2n− j − 1

j

)(
−
√
cd
)j (√

c+
√
d
)2n−2j

and
√
ccn+

√
ddn =

n∑
j=0

2n+ 1

2n− 2j + 1

(
2n− j

j

)(
−
√
cd
)j (√

c+
√
d
)2n−2j+1

.

Equalizing c and d to conclude that

4n =
1 + (−1)n

2
−(−1)n (n+ 1)2+

n−1∑
j=1

n+ 1

n− j + 1

(
2n− j + 1

j

)
(−1)j+14n−j

and

4n = 1− (−1)n (2n+ 1) +

n−1∑
j=1

2n+ 1

2n− 2j + 1

(
2n− j

j

)
(−1)j+14n−j .

Letting vn(4) = (an−1, · · · a0) ∈ Qn for which we have 4n = an−14
n−1 +

an−24
n−1+ · · ·+ a0, then 4n is a linear combination of 1, 4, , 4n−1 in two

different ways. Some values in the case n = 2 are given in Table 3. In
the general case vn(m) depend on the parity of n. Taking d = m2c to
write

m2n = 2 (−m)n − 1 +
n−1∑
j=0

n

n− j

(
2n− j − 1

j

)
(m+ 1)2n−2j (−m)j

and

m2n+1 = −1 +
n∑

j=0

2n+ 1

2n− 2j + 1

(
2n− j

j

)
(m+ 1)2n−2j+1 .

Consequently the power product mn can be written in two different ways
as a linear combination of the lower powers. The other two scripts are:

m2n =
m− 2(−1)nmn+1

2n
−1

2

∑
1

1

n− j

(
2n− j − 1

j

)(
2n− 2j

k − j − 1

)
(−1)jmk

and

m2n+1 =
m

2n+ 1
−
∑
2

1

2n− 2j + 1

(
2n− j

j

)(
2n− 2j + 1

k − j − 1

)
(−1)jmk,
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Table 3. Few vectors vn(4)

Form 1 of vn(4) Form 2 of vn(4)
42 = (6,−8) 42 = (5,−4)
43 = (8− 20, 16) 43 = (7− 14, 8)
44 = (10,−35, 50,−24) 44 = (9,−27, 30,−8)
45 = (12,−54, 112,−105, 36) 45 = (11,−44, 77,−55, 12)
46 = (14,−77, 210,−294, 196,−48) 46 = (13,−65, 156,−182, 91,−12)
47 = (16, 10, 352,−660, 672,−336, 64) 47 = (15,−90, 275,−450, 378,−140, 16)

where ∑
1

=

2n−1∑
k=1

⌊(2n−k+1)/2⌋∑
j=1

and
∑
2

=

2n∑
k=1

⌊(2n−k+2)/2⌋∑
j=0

.

4. Discussion

This work unified the expression of a large family of polynomials
known in the literature. This is the case with Gegenbauer, Horadam,
Fermat, Pell, Jacobsthal, Humbert [28] and Morgan-Voyce polynomials.
They are not the only ones, the list is long, the space available does not
allow to quote them all. As we have seen, they are all linear combi-
nations of exponential partial Bell polynomials. These polynomials are
relevant tools of generating functions theory and number sequences. We
can clearly see their importance in the number theory; as is the case
Fermat and Mersenne numbers and power numbers. Using Bell polyno-
mials; we succeeded in giving formal decomposition in product of two
numbers for some number sequences and to ask some open questions
concerning number fields and prime numbers.
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