Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran <http://cjms.journals.umz.ac.ir> <https://doi.org/10.22080/cjms.2024.26860.1686> Caspian J Math Sci. **13**(1)(2024), 219-227 (Research Article)

The Meir-Keeler fixed point theorem in incomplete 2**-normed spaces**

Huda Ismail Hussein², Bahram Mohammadzadeh^{[1](#page-0-0)} and Rohollah Bakhshandeh-Chamazkoti³ ¹*,*2*,*3Department of Basic Sciences, Babol Noshirvani University of Technology, Iran.

Abstract. In this paper, we give a new fixed point theorem for the Meir-Keeler mappings definded on incomplete orthogonal 2-Banach spaces. This can be 2-Banach version of the Meir-Keeler fixed point theorem.

Keywords: Meir-Keeler mapping; Orthogonal 2-Banach spaces; Fixed point.

2000 Mathematics subject classification: 54C40, Secondary 14E20.

1. INTRODUCTION

Throughout this article, N stands for the set of all positive integers, and $\mathbb{R}_+ = [0, \infty)$. Fixed point theory for contractive and non-expansive mapping defined in Banach spaces has been extensively developed since the mid 1960s; see for example [\[3,](#page-7-0) [11,](#page-8-0) [15\]](#page-8-1). The Banach contraction principle [[2](#page-7-1)] is the most wildely applied fixed point result in many branches of mathematics and considered as the main source of metric fixed point theory.

¹Corresponding author: b.mohammadzadenit@gmail.com

Received: 12 March 2024 Revised: 10 June 2024

Accepted: 19 June 2024

How to Cite: ; Ismail Hussein,Huda; Mohammadzadeh, Bahram; Bakhshandeh-Chamazkoti, Rohollah. The Meir-Keeler fixed point theorem in incomplete 2-normed spaces, Casp.J. Math. Sci.,**13**(1)(2024), 219-227.

This work is licensed under a Creative Commons Attribution 4.0 International License.

 \bigcirc \bigcirc \bigcirc \bigcirc \circ Copyright \circ 2023 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

²¹⁹

Theorem 1.1. [[2](#page-7-1)] Let (X,d) be a complete metric space and let T : $X \rightarrow X$ *be a mapping such that there exists a nonnegative number* $k < 1$ *and for all* $x, y \in X$

$$
d(Tx, Ty) \leq kd(x, y).
$$

Then, T has a unique fixed point in X.

In 1969, Meir and Keeler [\[17](#page-8-2)] gave an interesting generalization the Banach contraction principle as the following; see also [\[19](#page-8-3)].

Theorem 1.2. If a mapping $T: X \to X$ where (X, d) is a complete *metric space, and for every* $\varepsilon > 0$ *there exists* $\delta(\varepsilon) > 0$ *such that for* $x, y \in X$,

$$
\varepsilon \le d(x, y) < \varepsilon + \delta(\varepsilon) \Rightarrow d(Tx, Ty) < \varepsilon.
$$

Then, T has a unique fixed point.

In 1965, Gahler [[9](#page-8-4), [10](#page-8-5)] initiated the notion of 2-normed spaces. There was a strong interest to study the fixed point property in 2-Banach spaces after the first paper [\[14](#page-8-6)] was published in 1977. Many problems in metric and Banach space can be reformulated in 2-Banach spaces. The fixed point property in 2-Banach spaces has been defined and investigate by many authors. For more details on 2-Banach spaces, the reader may consult the book [[8](#page-8-7)].

In order to generalized Banach contraction principle Eshaghi Gordji et al. [\[7](#page-8-8)] introduced the notion of orthogonal set in 2017. Fixed point properties in orthogonal spaces have been studied by many authors [\[1,](#page-7-2) [5,](#page-7-3) [6,](#page-8-9) [7](#page-8-8), [18\]](#page-8-10).

Our aim in this paper is to prepare a fixed point theorem for the Meir-Keeler mappings on incomplete orthogonal 2-Banach spaces. In other words, 2-Banach version of the Meir-Keeler fixed point theorem is introduced. Our results are extremely new in 2-banach space.

2. Preliminaries

We begin this section by recalling the defnition of an orthogonal set. This property is central in our considerations; see [[1](#page-7-2), [7](#page-8-8)].

Definition 2.1. Let *X* be a non-empty set and \perp be a binary relation defined on $X \times X$. Then (X, \perp) is said to be an orthogonal set (abbreviated as *O*- set) if there exists $x_0 \in X$ such that

$$
(\forall y \in X, x_0 \perp y)
$$
 or $(\forall y \in X, y \perp x_0)$.

The element x_0 is called an orthogonal element. An orthogonal set may have more than one orthogonal element.

Example 2.2. Let *X* be a norm linear space. For any two element $x, y \in X$, we define the notion \perp by $x \perp y$ iff $||x|| \leq ||x + \lambda y||$ for all $\lambda \in \mathbb{R}$. It is easy to see that $x \perp 0$ and $0 \perp x$ for all $x \in X$. Then (X, \perp) is an *O*- set.

Definition 2.3. Let (X, \perp) be an *O*- set. A sequence (x_n) in *X* is said to be an orthogonal sequence (abbreviated as *O*- sequence) if

$$
(\forall n \in \mathbb{N}, x_n \perp x_{n+1})
$$
 or $(\forall n \in \mathbb{N}, x_{n+1} \perp x_n).$

Definition 2.4. Let (X, \perp) be an *O*- set. A sequence (x_n) in *X* is said to be a strongly orthogonal sequence (abbreviated as *SO*- sequence) if

$$
(\forall n, k \in \mathbb{N}, x_k \perp x_{n+k})
$$
 or $(\forall n, k \in \mathbb{N}, x_{n+k} \perp x_k).$

From the definition, it is obvious that each *SO*-sequence is an *O*sequence, but the converse is not true; see [\[1,](#page-7-2) [7\]](#page-8-8). The following example shows that the converse is not true.

Example 2.5. Let us set $X = \mathbb{R}_+$, and we define a binary relation \perp on *X* by

$$
x \bot y
$$
 if and only if $xy = \min\{x, y\}.$

It is easy to see that $x \perp 0$ for all $x \in X$. Hence (X, \perp) is an *O*- set. Define the sequence (x_n) in *X* as follows:

$$
x_n = \begin{cases} 0 & \text{if } n = 2k, \\ 2 & \text{if } n = 2k + 1 \end{cases}
$$

such that $k \in \mathbb{N}$. Clearly, for all $n \in \mathbb{N}$, $x_n \perp x_{n+1}$. But x_{2n+1} is not orthogonal to x_{4n+1} . This shows that, (x_n) is an *O*-sequence but not an *SO*-sequence.

Definition 2.6. Let $\|.\|$ be a norm on linear space *X*, and (X, \perp) be an *O*- set. The triplet $(X, \perp, \|\cdot\|)$ is called an orthogonal norm space.

Definition 2.7. Let $(X, \perp, \|.\|)$ be an orthogonal norm space. *X* is called strongly orthogonal complete (abbreviated as *SO*-complete) if every Cauchy *SO*-sequence is convergent.

Obviously, every complete norm space (Banach space) is *SO*-complete. The following example shows that the converse is not true.

Example 2.8. Let $C_b(\mathbb{R})$ denotes the set of all real-valued bounded continuous functions on R. The collection of real valued functions on R that have compact support is denoted by $C_c(\mathbb{R})$. In other words, $f \in C_b(\mathbb{R})$ belongs to $C_c(\mathbb{R})$ if and only if the set $\{x \in X : f(x) \neq 0\}$ has compact closure. We note that the space $C_c(\mathbb{R})$ with the norm $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$ is not complete.

Let $X = C_c(\mathbb{R})$. For any two elements $f, g \in X$, we define the orthogonal relation *⊥* as follows:

f \perp *g* if and only if $f(t)g(t) \ge \max \{f(t), g(t)\}$ for all $t \in \mathbb{R}$.

We show that *X* is *SO*-complete. Let ${f_n}$ be a cauchy *SO*-sequence in *X*. The completeness of $C_b(\mathbb{R})$ with respect to the supremum norm, yields the existence of the limit. So there exists $f \in C_b(\mathbb{R})$ such that $\lim_{n\to\infty}$ $||f_n - f|| = 0$. Since for all $n \in \mathbb{N}$ and $t \in \mathbb{R}$, $f_n(t) \ge 1$ it could be concluded that, $f \in C_c(\mathbb{R})$.

Definition 2.9. Let *C* be a non-empty subset an orthogonal norm space $(X, \perp, \|\cdot\|)$. A mapping $T: C \to C$ is said to be strongly orthogonal $\|\cdot\|$ continuous (abbreviated as *SO*- $\|.\|$ -continuous) in $x \in C$ if for any *SO*-sequence $(x_n) \subset C$ which $\| \ldots \|$ -convergent to *x*, then $(T(x_n))$ be $\| \ldots \|$ convergent to Tx .

It can be easily derived that every continuous mapping is *SO*-continuous. By the following example, we show that the converse is not true.

Example 2.10. Let $X = \mathbb{R}$ equipped with the usual metric. That is, for $x, y \in X$, $d(x, y) = |x - y|$. We define a binary relation \perp on *X* by *x⊥y* if and only if *xy* = min *{x, y}*.

y if and only if
$$
xy = \min\{x, y\}
$$
.

Define $f: X \to X$ by

$$
f(x) = \begin{cases} 1 & \text{if } x \in Q, \\ x & \text{if } x \in Q^c \end{cases}
$$

It is easy to see that f is not continuous in 0. Let (x_n) be an *SO*-sequence in *X* which converges to 0. According to the definition of relation*⊥*, we have $x_n = 0$, for all $n \in \mathbb{N}$. This implies that $f(x_n) = 1 \rightarrow 1 = f(0)$. Thus, f is *SO*-continuous in 0.

3. Meir-Keeler mapping in orthogonal 2-Banach spaces

We state a brief recollection of basic concepts and facts in 2-norm spaces [[8](#page-8-7)].

Definition 3.1. Let *X* be a real vector space of dimension greater than 1. A function $\Vert ., \Vert : X \times X \to [0, \infty)$ is called a 2-norm on X if the following properteis hold:

- (1) $||x, y|| = 0$ if and only if *x* and *y* are linearly dependent,
- (2) $||x, y|| = ||y, x||$ for all $x, y \in X$,
- (3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ for all $\alpha \in \mathbb{R}$ and $x, y \in X$,
- $|(4) \|x, y + z\| \leq \|x, y\| + \|x, z\|$ for all $x, y, z \in X$.

The pair $(X, \| \cdot, \cdot \|)$ is called a vector 2-norm space.

Definition 3.2. Let $(X, \| \cdot, \cdot \|)$ be a vector 2-norm space.

(1) A sequence (x_n) in $(X, \|\cdot\|)$ is said to be convergent to $x \in X$ if $||x_n - x, y||$ → 0 as $n \to \infty$, for all $y \in X$.

- (2) The sequence (x_n) in $(X, \| \cdot, \cdot \|)$ is said to be Cauchy if $||x_n x_m, y|| \rightarrow$ 0 as $n, m \to \infty$, for all $x, y \in X$.
- (3) A vector 2-norm space $(X, \|\cdot\|)$ is said to be 2-Banach space if any Cauchy sequence in $(X, \|., \|)$ is a convergent sequence.

Definition 3.3. Let $(X, \| \cdot, \cdot \|)$ be a 2-norm space and \perp be an orthogonal relation on *X*. The triplet $(X, \perp, \parallel, .\parallel)$ is said an orthogonal 2-norm space.

Definition 3.4. Let $(X, \perp, \parallel, \cdot, \parallel)$ be a orthogonal 2-Banach space.

- (1) A subset $B \subset X$ is said to be *SO*- \parallel , . \parallel -closed if for any *SO*sequence $(x_n) \subset B$ which $\| \cdot, \cdot \|$ -convergent to *x*, then $x \in B$.
- (2) $(X, \perp, \parallel, \ldots \parallel)$ is said to be strongly orthogonal $\parallel, \ldots \parallel$ -complete (abbreviated as *SO*- *∥., .∥*-complete) if every *∥., .∥*-Cauchy *SO*-sequence is *∥., .∥*-convergent in *X*.
- (3) Let *C* be a non-empty subset of *X*. A mapping $T: C \to C$ is said to be *⊥*-preserving if for each $x, y \in K$ such that $x \perp y$, then *T x⊥T y*.

Now, we give the 2-Banach space version of the Meir-Keeler mapping introduced in [[17](#page-8-2)].

Definition 3.5. Let *K* be a non-empty *SO*-*∥., .∥*-closed subset of orthogonal 2-Banach space $(X, \perp, \parallel, .\parallel)$, and $c, l \in (0, \infty)$ with $c > l$. A mapping $T: K \to K$ satisfies the Meir-Keeler condition whenever for every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

 $\varepsilon \leq ||l(x - y), z|| < \varepsilon + \delta(\varepsilon) \Rightarrow ||c(Tx - Ty), z|| < \varepsilon,$ for all $x, y, z \in K$ and $x \neq y, x \perp y$.

Now we are ready to state our main result. In fact, we give the 2- Banach version of the Meir-Keeler fixed point theorem for incomplete orthogonal sets.

Theorem 3.6. *Let* $(X, \perp, \parallel, \cdot, \parallel)$ *be an SO*- $\parallel, \cdot, \parallel$ -complete orthogonal 2*-Banach space (not necessarily ∥., .∥-complete). Let K be a nonempty, SO*[−] \parallel </sup>., \parallel ^{*-closed subset of X. Assume that* $T: K \rightarrow K$ *5s a Meir-Keeler's*} *type contraction, ∥., .∥-preserving, and SO- ∥., .∥-continuous. Then T has a unique fixed point* $x \in K$ *such that for all* $z \in K$ *the sequence* $(T^n(z))$ *is* $\Vert ., . \Vert$ *-convergent to x.*

Proof. Let x_0 is an orthogonal element in X , we have

$$
(\forall y \in X, x_0 \perp y)
$$
 or $(\forall y \in X, y \perp x_0)$.

This implies that $x_0 \perp T(x_0)$ or $T(x_0) \perp x_0$. Let us consider the sequence (x_n) where $x_n = T^n(x_0)$ for all $n \in \mathbb{N}$. It is obvious that

$$
(\forall n \in \mathbb{N}, x_0 \perp x_n)
$$
 or $(\forall n \in \mathbb{N}, x_n \perp x_0)$.

Since *T* is a *⊥*-preserving map, we have either

$$
(\forall n, k \in \mathbb{N}, x_k = T^k(x_0) \bot x_{n+k} = T^k(x_n))
$$

or

cases:

$$
(\forall n, k \in \mathbb{N}, x_{n+k} = T^k(x_n)) \bot x_k = T^k(x_0).
$$

This implies that (x_n) is an *SO*-sequence.

Now, we verify that for all $z \in X$, $\lim_{n \to \infty} ||l(x_{n+1} - x_n), z|| = 0$.

If there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} = x_{n_0+1}$, then the result follows. Now, let for all $n \in \mathbb{N}$, $x_n \neq x_{n+1}$. By using the Meir-Keeler condition, for all $n \in \mathbb{N}$ and $z \in X$, we have

$$
||l(x_{n+1}-x_n),z|| \leq ||l(x_n-x_{n-1}),z||.
$$

Since the sequence $(\|l(x_{n+1} - x_n), z\|)$ is strictly decreasing in R, put

$$
r := \lim_{n \to \infty} ||l(x_{n+1} - x_n), z||.
$$

We claim that $r = 0$. Suppose that $r > 0$. By the Meir-Keeler condition, we have $\delta(r) > 0$ such that $x \neq y$, $x \perp y$ and $r \leq ||l(x - y), z|| < r + \delta(r)$, $||c(Tx - Ty), z|| < r$. On the other hand, $\lim_{n \to \infty} ||l(x_{n+1} - x_n), z|| =$ *r*, then there exists $t_0 \in \mathbb{N}$ such that $r \leq ||l(x_{t_0} - x_{t_0-1}), z|| < r + \delta(r)$, then $||c(Tx_{t_0} - Tx_{t_0-1}), z|| < r$. So $||c(x_{t_0} - x_{t_0-1}), z|| < r$ and this is a contradiction. Therefore it must be $r = 0$ and we obtain

$$
\lim_{n \to \infty} ||l(x_{n+1} - x_n), z|| = 0.
$$

Next we prove that (x_n) is $\| \cdot \|$. $\|$ -cauchy in *X*. Let $\varepsilon > 0$ be given. Choose $\xi > 0$ with $\Im \xi < \varepsilon$. By using the Meir-Keeler condition, there exists $\delta(\xi) > 0$ such that $x \neq y$, $x \perp y$ and $\xi \leq ||l(x - y), z|| < \xi + \delta(\xi)$. Therefore

$$
||c(Tx-Ty),z|| < \xi.
$$

 P ut $\delta' = \min \{1, \xi, \delta(\xi)\}\$. So we have $x \neq y$, $x \bot y$ and $\xi < ||l(x - y), z|| <$ $\xi + \delta'$. Therefore $||c(Tx - Ty), z|| < \xi$.

Since $\lim_{n\to\infty}$ $||l(x_{n+1} - x_n), z|| = 0$, there exists $j_0 \in N$ such that for all *n* $\geq j_0$, we have $||l(x_{n+1} - x_n), z|| < \frac{\delta'}{\delta}$. Let

$$
\sum_{k=1}^{n} \left\{ k \in N : k \geq j_0 \text{ and } ||l(x_k - x_{j_0}), z|| < \xi + \frac{\delta'}{2} \right\}
$$

clearly, $\sum \neq \emptyset$. we must next prove that $m \in \sum$ such that $m + 1 \in \sum$. Let $m \in \sum$. So $||l(x_m - x_{j_0}), z|| < \xi + \frac{\delta'}{2}$. If $m = j_0$, then $m + 1 \in \sum$, by Let $m > j_0$. Now, we consider two Case 1. Let $\xi \le ||l(x_m - x_{j_0}), z|| < \xi + \frac{\delta'}{2}$. Since x_m and x_{j_0} are \perp -comparable. We have

$$
||c(Tx_m - Tx_{j_0}, z)|| < \xi.
$$

From the definition of 2-norm, we get

$$
||c(x_{m+1} - x_{j_0}, z)|| = ||c(Tx_m - x_{j_0}, z)||
$$

= $||c(Tx_m - Tx_{j_0} + Tx_{j_0} - x_{j_0}), z)||$
 $\leq ||c(Tx_m - Tx_{j_0}), z|| + ||c(Tx_{j_0} - x_{j_0}), z||$
 $< \xi + \frac{\delta'}{8}$
 $< \xi + \frac{\delta'}{2}$

which means that $m + 1 \in \Sigma$.

Case 2. $||c(x_m - x_{j_0}), z|| < \xi$. We then have

$$
||c(x_{m+1} - x_{j_0}), z)|| = ||cx_{m+1} - cx_{j_0} + cx_m - cx_m, z||
$$

\n
$$
\leq ||c(x_{m+1} - x_m), z|| + ||c(x_m - x_{j_0}), z||
$$

\n
$$
< \xi + \frac{\delta'}{8}
$$

\n
$$
< \xi + \frac{\delta'}{2}
$$

So $m + 1 \in \Sigma$.

Therefore, we get for all $k \geq j_0$

$$
||l(x_k - x_{j_0}), z)|| < \xi + \frac{\delta'}{2}.
$$

For all $m, n \in \mathbb{N}$ with $m \geq n \geq j_0$, we obtain

$$
||l(x_m - x_n), z)|| \le ||l(x_m - x_{j_0}), z|| + ||l(x_n - x_{j_0}), z)||
$$

<
$$
< 2\xi + \delta'
$$

$$
\le 3\xi
$$

<
$$
< \varepsilon.
$$

Therefore, (x_n) is \parallel ., . \parallel -Cauchy So-sequence in *X*. Since *X* is an *SO*-*∥., .∥*-complete orthogonal 2-Banach space and *B* is an *SO*- *∥., .∥*-closed subset of *X*, then there exists $x \in B$ such that for all $z \in X$,

$$
\lim_{n \to \infty} ||c(x_n - x), z|| = 0.
$$

On the other hand, *T* is *SO*- *∥., .∥*-continuous mapping. Therefore $\lim_{n \to \infty} ||c(Tx_n - Tx), z|| = 0$. So for all $\varepsilon \geq 0$, there exists $n_0 \in \mathbb{N}$ such that

$$
||c(x_{n_0+1}-x), z|| < \frac{\varepsilon}{2}
$$
 and $||c(Tx_{n_0}-Tx), z|| < \frac{\varepsilon}{2}$.

Now, we have

$$
||c(Tx-x),z)|| \le ||c(Tx-Tx_{n_0}),z|| + ||c(Tx_{n_0}-x),z)|| < \varepsilon
$$

Therefore $||c(Tx - x), z)|| = 0$, for all $z \in X$, which implies that $Tx = x$. Since x_0 is an orthogonal element in X , one of the following holds:

$$
x_0 \perp x
$$
 and $x_o \perp y$

or

$$
x \perp x_0
$$
 and $y \perp x_0$

fot all $y \in B$. Since *T* is *⊥*-preserving, we have $T^n x_o \perp x$ and $T^n x_o \perp T^n y$ or $x \perp T^n x_o$ and $T^n y \perp T^n x_o$ for all $n \in \mathbb{N}$.

Using Meir-Keeler contraction, we conclude that the sequence $\{\|l(T^nx - T^nx_o), z\|\}$ is strictly decreasing for all $z \in X$. According to the scheme used in step 1, it could be obtained that $\lim_{n\to\infty} ||c(T^nx - T^nx_o), z|| = 0$. For all $n \in \mathbb{N}$, we have

$$
||c(T^ny-x),z|| \le ||c(T^ny-T^nx_0),z|| + ||c(T^nx_0-x),z||.
$$

Thus, $\lim_{n\to\infty} ||c(T^ny-x), z|| = 0$. Now we show that the set of the fixed points of *T* is a singletone set. Assume that *t inB* is a fixed point of *T*. Then $T^n(t) = t$ for all $n \in \mathbb{N}$. So $\lim_{n \to \infty} ||T^n(t) - t, z|| = 0$ for all $z \in X$ and also we know that $\lim_{n\to\infty} ||T^n(t) - x, z|| = 0$ for all $z \in X$. Therefore the uniqueness of limit implies that $t = x$ and so the proof is complete. □

REFERENCES

- [1] H., Baghani, M., Eshaghi, M., Ramezani, Orthogonal sets: the axiom of choiceand proof of a fixed point theorem, J. Fixed Point Theory Application., 18 (2016), pp. 465–477.
- [2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), pp. 133–181.
- [3] L.P. Belluce and W.A. Kirk, Non-expansive mappings and fixed points in Banach spaces, Illinios J. Math. 11 (1967) 474–479.
- [4] C. Diminnie and A.G. White, Non-expansive mappings in Linear 2-normed spaces, Math Japonica, (1976), 21, 197–200
- [5] M. Eshaghi, H. Habibi, Fixed point theory in *ε*-connected orthogonal metric space. Sahand Commun. Math. Anal. 16 (2019), 35–46.
- [6] M. Eshaghi, H. Habibi, Fixed point theory in generalized orthogonal metric space. J. Linear And Topol. Algebra. 6 (2017), 251-260.
- [7] M., Eshaghi, M., Ramezani, M., De la Sen, Y. J., Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory. 18 (2017), pp. 569–578.
- [8] R. Freese, Y. Cho, Geometry of Linear 2-normed Spaces, Nova Science Publishers, Hauppauge, NY, 2001.
- [9] S. Gahler, 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26(1963), 115–148.
- [10] S. Gahler, Uber die unifromisieberkeit 2-metrischer Raume, Math. Nachr. 28(1965), 235 - 244.
- [11] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [12] K. Iseki, Fixed point theorems in 2-metric spaces, Math. Seminar Notes XIX (1975).
- [13] K. Iseki, Fixed point theorems in 2-metric space, Math. Seminar. Notes, Kobe Univ., 3(1975), 133–136.
- [14] K. Iseki, Mathematics on 2-normed spaces, Bull. Korean Math. Soc. 13 (2) (1977), 127–135.
- [15] M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. John Wiley, New York, 2001.
- [16] M. Kir, H. Kiziltunc, Some New Fixed Point Theorems in 2-Normed Spaces, Int. J of Math. Analysis, Vol. 7 No. 58 (2013), 2885–2890.
- [17] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326–329.
- [18] M. Ramezani and H. Baghani, The Meir–Keeler fixed point theorem in incomplete modular spaces with application, J. Fixed Point Theory Appl., DOI 10.1007/s11784-017-0440-2, 2017.
- [19] T. Suzuki, Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces. Nonlinear Anal. 64 (2006), 971–978.